Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:09:28.421Z Has data issue: false hasContentIssue false

Nucleation and Glass Formation

Published online by Cambridge University Press:  26 February 2011

D. R. Uhlmann
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139
M. C. Weinberg
Affiliation:
Jet Propulsion Laboratory Pasadena, CA 91109
Get access

Abstract

The role of nucleation kinetics in affecting glass formation behavior is discussed. Also considered are measurements of homogeneous crystal nucleation in a variety of liquids. For a number of oxide glass-forming liquids, available data indicate pre-exponential factors which are larger than those predicted from classical nucleation theory by factors of 1017 to 1049. Possible sources of this discrepancy are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cohen, M. H., and Turnbull, D. (1959). J. Chem. Phys. 31, 1164.Google Scholar
2 Cormia, R. L., Price, F. P., and Turnbull, D. (1962). J. Chem. Phys. 37, 1333.CrossRefGoogle Scholar
3 Cranmer, D., Salomaa, R., Yinnon, H., and Uhlmann, D. R. (1981). J. Non-Cryst. Solids 45, 127.Google Scholar
4 Fang, C. Y., and Uhlmann, D. R. (1983). J. Non-Cryst. Solids 57, 465.CrossRefGoogle Scholar
5 Gonzalez-Oliver, C. J. R., and James, P. F. (1980). J. Non-Cryst. Solids 38/39, 699.Google Scholar
6 Harrowell, P., and Oxtoby, D. W. (1984). J. Chem. Phys. 80, 1639.Google Scholar
7 Hopper, R. W., Scherer, G. W., and Uhlmann, D. R. (1974). J. Non-Cryst. Solids 15, 45.CrossRefGoogle Scholar
8 James, P. F. (1985). J. Non-Cryst. Solids 73, 517.Google Scholar
9 James, P. F., and Rowlands, E. G. (1979). In “Phase Transformations, Vol.2” (Inst. Metallurgists, London).Google Scholar
10 Miyazawa, Y., and Pound, G. M. (1974). J. Crystal Growth 23, 45.Google Scholar
11 Neilson, G. F., and Weinberg, M. F. (1979). J. Non-Cryst. Solids 34, 137.Google Scholar
12 Onorato, P. I. K., and Uhlmann, D. R. (1976). J. Non-Cryst. Solids 22, 367.Google Scholar
13 Onorato, P. I. K., Uhlmann, D. R., and Hopper, R. W. (1980). J. Non-Cryst. Solids 41, 189.Google Scholar
14 Oxtoby, D. W., and Haymet, A. D. J. (1982). J. Chem. Phys. 76, 6262.Google Scholar
15 Perepezko, J. H., and Rasmussen, D. H. (1978). Trans. AIME 9A, 1490.Google Scholar
16 Rowlands, E. G., and James, P. F. (1977). In “The Structure of Non-Crystalline Solids” (Taylor and Francis, London).Google Scholar
17 Rowlands, E. G., and James, P. F. (1979). Phys. Chem. Glasses 20, 1.Google Scholar
18 Rowlands, E. G., and James, P. F. (1979). Phys. Chem. Glasses 20, 9.Google Scholar
19 Spaepen, F. (1975). Acta Met. 23, 729.Google Scholar
20 Turnbull, D. (1952). J. Chem. Phys. 20, 411.CrossRefGoogle Scholar
21 Turnbull, D. (1969). Contemp. Phys. 10, 473.CrossRefGoogle Scholar
22 Turnbull, D. (1980). In “Progress in Materials Science,” Vol.10 (Pergamon Press, New York).Google Scholar
23 Turnbull, D. (1985). J. Non-Cryst. Solids 75, 197.Google Scholar
24 Turnbull, D., and Cohen, M. H. (1958). J. Chem. Phys. 29, 1049.Google Scholar
25 Turnbull, D., and Cohen, M. H. (1961). J. Chem. Phys. 34, 120.Google Scholar
26 Turnbull, D., and Cohen, M. H. (1970). J. Chem. Phys. 52, 3038.Google Scholar
27 Turnbull, D., and Cormia, R. L. (1961). J. Chem. Phys. 34, 820.Google Scholar
28 Uhlmann, D. R. (1972). J. Non-Cryst. Solids 7, 337.CrossRefGoogle Scholar
29 Walton, A. G. (1969). In “Nucleation” (Dekker, New York).Google Scholar