Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:40:25.472Z Has data issue: false hasContentIssue false

Nuclear Reaction Spectroscopy of Vibrational Modes of Solids

Published online by Cambridge University Press:  26 February 2011

M. Zinke-Allmang
Affiliation:
Now at: AT&T Bell Laboratories, Murray Hill, N.J. 07874
S. Kalbitzer
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 10 39 80, D-6900 Heidelberg
M. Weiser
Affiliation:
Max-Planck-Institut für Kernphysik, Postfach 10 39 80, D-6900 Heidelberg
Get access

Abstract

The effects of target-atom vibrations on nuclear reaction kinetics have been examined. In particular, Doppler broadening of resonance-type and elastic- scattering reactions has been considered in detail. Depending on the specific process parameters, the resulting energy widths can be many orders of magnitude larger than the energies of the vibrational states of the target solid. Comparison of experimental results on a hydrogen-bearing thin target with the theoretical predictions shows excellent agreement. We will show the importance of this effect in hydrogen profiling measurements and point out the feasibility of vibrational spectroscopy on hydrogen in solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Izsak, K., Berthold, J., Kalbitzer, S., Nucl. Instr. and Meth. B 15 (1986) 34 Google Scholar
2. Jousten, K., Frerichs, H.P., Kalbitzer, S., Nucl. Instr. and Meth. B 15 (1986) 322 CrossRefGoogle Scholar
3. Zinke-Allmang, M., Kalbitzer, S., Weiser, M., Z. Phys. A 320 (1985) 697 CrossRefGoogle Scholar
4. Zinke-Allmang, M., Kalbitzer, S., Z. Phys. A 323 (1986) 251 Google Scholar
5. Bethe, H.A., Revs. Mod. Phys. 9 (1937) 69 H.A. Bethe, G. Placzek, Phys. Rev. 51 (1937) 450CrossRefGoogle Scholar
6. Weidenmüller, H.A. (private communication)Google Scholar
7. Amsel, G., Cohen, C., Maurel, B., Nucl. Instr. and Meth. B 14 (1986) 226 Google Scholar
8. Goldstein, H., “Classical Mechanics”, Addison-Wesley Publishing Company, Reading MA 1980 Google Scholar
9. Zinke-Allmang, M., PhD Thesis, Heidelberg 1985 Google Scholar
10. Maurel, B., Amsel, G., Nucl. Instr. and Meth. 218 (1983) 159 CrossRefGoogle Scholar
11. Damjantschitsch, H., Weiser, M., Heusser, G., Kalbitzer, S., Mannsperger, H., Nucl. Instr. and Meth. 218 (1983) 129 Google Scholar
12. Uhrmacher, M., Pampus, K., Bergmeister, F.J., Purschke, D., Lieb, K.P., Nucl. Instr. and Meth. B 9 (1985) 234 Google Scholar
13. Zinke-Allmang, M., Köβler, V., Kalbitzer, S., Nucl. Instr. and Meth. B 15 (1986) 563 Google Scholar
14. Weiser, M., PhD Thesis, Heidelberg 1984 Google Scholar
15. Williams, D.H., Fleming, I., “Svectroskovische Methoden zur Struktur-aufklärung”, Thieme, Stuttgart 1979 Google Scholar
16. Sakamoto, M., J. Phys. Soc. Japan 19 (1964) 1862 Google Scholar
17. Holleman, A.F., Wiberg, E., “Lehrbuch der anorganischen Chemie”, de Gruyter, Berlin 1976 Google Scholar
18. Staab, H.A., “Einführung in die theoretische organische Chemie”, Verlag Chemie, Weinheim 1960 Google Scholar
19. Amsel, G., Maurel, B., Nucl. Instr. and Meth. 218 (1983) 183 Google Scholar
20. Lanford, W.A., Nucl. Instr. and Meth. 149 (1978) 1 Google Scholar
21. Zinke-Allmang, M., Kalbitzer, S., Weiser, M., Z. Phys. 325 (1986) 183 Google Scholar