Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:28:06.680Z Has data issue: false hasContentIssue false

A Novel Wavelength Tunable Silicon Detector for Infrared Detection

Published online by Cambridge University Press:  21 February 2011

A. G. U. Perera
Affiliation:
Also at Microtronics Associates Inc., 4516 Henry St., Pittsburgh, PA 15213
R. E. Sherriff
Affiliation:
Department of Physics, University of Pittsburgh, Pittsburgh, PA 15260.
M. H. Francombe
Affiliation:
Also at Microtronics Associates Inc., 4516 Henry St., Pittsburgh, PA 15213
R. P. Devaty
Affiliation:
Department of Physics, University of Pittsburgh, Pittsburgh, PA 15260.
Get access

Abstract

A cryogenic extrinsic silicon detector which can detect IR photons of very low energy, i.e., down to about 5.5 meV ( 220 μm) is presented. The mechanism involves photoexcitation of carriers over low energy interfacial work function barriers at p-i or n-i interfaces in a process analogous to the classic photoelectric effect. Estimates for the responsivity and the detectivity for unoptimized commercial samples containing both p-i and n-i interfaces and a sample containing only a single p-i interface are provided by comparison with a silicon composite bolometer. The range of long wavelength thresholds (λt) observed suggests that this approach can be used to tailor detectors for different IR wavelength regions by changing the dopant impurity and the impurity concentration at levels near the metal-insulator transition. Single interface results confirm the possibility of detector optimization using multilayered structures. This should lead to a unique family of uniform monolithic IR focal plane structures with tailorable and tunable response characteristics within virtually all the IR spectral range of interest.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wolfe, William L. and Zissis, George J., The Infrared Handbook, Office of Naval Research, Washington, DC, 1985.Google Scholar
[2] Sclar, N., Properties of Doped Silicon and Germanium Infrared Detectors in Progress in Quantum Electronics 9, Pergamon Press, 1984, pp. 149257.Google Scholar
[3] Shepherd, F. D. and Yang, A. C., Silicon Schottky Retinas for Infrared Imaging in IEDM Technical Digest, IEEE, 1973, pp. 310–313.CrossRefGoogle Scholar
[4] Coon, D. D. and Karunasiri, R. P. G., Electronics Letters 19, 284 (1983).Google Scholar
[5] Coon, D. D. and Perera, A. G. U., Solid State Electronics 31, 851 (1988).Google Scholar
[6] Coon, D. D. and Karunasiri, R. P. G., Appl. Phys. Lett. 45, 649 (1984).Google Scholar
[7] Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett. 50, 1092 (1987).Google Scholar
[8] Karunasiri, R. P. G., Park, J. S., Mii, Y. J. and Wang, K. L., Appl. Phys. Lett. 57, 2585 (1990).Google Scholar
[9] Kinch, M. A. and Yariv, A., Appl. Phys. Lett. 55, 2093 (1989).Google Scholar
[10] Levine, B. F., Appl. Phys. Lett. 56, 23542356 (1990).Google Scholar
[11] Coon, D. D., Devaty, R. P., Perera, A. G. U. and Sherriff, R. E., Appl. Phys. Lett. 55, 1738 (1989).Google Scholar
[12] Wagner, J. and Alamo, J. A. del, J. Appl. Phys. 63, 425 (1988).Google Scholar
[13] Davidson, A. W., Company Literature - Infrared Laboratories, Inc. 1808 E. 17th St, Tucson AZ 85719..Google Scholar
[14] Yang, Y. N., Coon, D. D. and Shepard, P. F., Appl. Phys. Lett. 45, 752 (1984).Google Scholar
[15] Coon, D. D., Ma, S. N. and Perera, A. G. U., Phys. Rev. Lett. 58, 1139 (1987).Google Scholar
[16] Coon, D. D. and Perera, A. G. U., Appl. Phys. Lett. 55, 478 (1989).Google Scholar