No CrossRef data available.
Article contents
Novel Self-Complimentary Tricyclic Heterocycles: Expanding the Chemistry of Self-Assembled Rosette Nanotubes
Published online by Cambridge University Press: 01 February 2011
Abstract
In an effort to increase the internal and external diameter of the RNT's, tricyclic GΛC base derivatives (XGΛC) have been synthesized and characterized. Hierchichal self-assembly results in formation of RNT's with an increased diameter, as evidenced by AFM and TEM measurements. Progress on the derivitization and characterization of the XGΛC RNT's will be presented.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1057: Symposium II – Nanotubes and Related Nanostructures , 2007 , 1057-II05-38
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
[1] (a) Lehn, J.-M.
Angew. Chem.Int. Ed.
1990, 29, 1304–1319. (b) Engelkamp, H; Middelbeek, S.; R. J. M. Nolte Science 1999, 284, 785-788. Chun, A. L.; Moralez, J. M; Webster, T. J.; Fenniri, H Biomaterials 2005, 26, 7304-7309. (c) Yamamoto, Y.; Fukushima, T.; Suma, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagava, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006, 314, 1761-1764. d) Supramolecular Dye Chemistry; Würthner, F., Ed. Top. Curr. Chem. 2005, 258, 1–313. (e) Supramolecular Materials and Technologies; Reinhoudt, D. N., Ed.; Perspectives in Supramolecular Chemistry, Vol. 4; Lehn, J.–M.; John Wiley & Sons, Chicester, England, 1999.Google Scholar
[2] (a) Harada, A., Li, J., Kamachi, M., Nature
1993, 364, 516–518. (b) Klok, H.–A.; Jollife, K. A.; Schauer, C. L.; Prins, L. J.; Spatz, J. P.; Müller, M.; Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 1999, 121, 7154–7155. (c) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384–389. (d) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481–1483. (e) Tian, Z.; Chen, Y.; Yang, W.; Yao, J.; Zhu, L.; Shuai, Z. Angew. Chem. Int. Ed. 2004, 43, 4060–4063. (f) Davis, J. T. Angew. Chem. Int. Ed. 2003, 43,668–698. (g) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem Rev. 2005, 105, 1491–1546. (h) Grimsdale, A. C.; Müllen, K. Angew. Chem. Int. Ed. 2005, 44, 5592– 5629. (i) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226–234. (j) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem. Int. Ed. 2006, 45, 38–68. (k) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich Nature 1993, 366, 324–327. (l) Hill, J.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimimura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483. (m) Elemans J. A. A. W.; Hameren, R. V.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251-1266.Google Scholar
[3] (a) Whitesides, G. M.; Mathias, J. P.; Seto, C. T.
Science
1991, 254, 1312–1319. (b) Martin, T.; Obst, U.; Rebek Jr., J Science 1998, 281, 1842-1845. (c) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E. W. Proc. Nat. Ac. Sci. 2002, 99, 4977-4982. (d) Schmittel, M.; Kalsani, V. Top. Curr. Chem. 2005, 245, 1-53. (e) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226-234. (f) Hoeben, F. J. M.; Jonkheim, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491-1546.Google Scholar
[5] (a) Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P.
Angew. Chem. Int. Ed.
1996, 35, 2204–2206. (b) Mascal, M.; Hext, N. M.; Warmuth, R.; ArnalllCuliford, J. R.; Moore, M. H.; Turkenburg, J. P. J. Org. Chem.1999, 64, 8479-8484.Google Scholar
[6] (a) Fenniri, H.; Mathivanam, P.; Vidale, K. L.; Sherman, D. M.; Hallenga, K.; Wood, K. V.; Stowell, J. G.
J. Am. Chem. Soc.
2001, 123, 3854–3855. (b) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. J. Am. Chem. Soc. 2002, 124, 11054-11072. (c) Fenniri, H.; Deng, B.-L.; Ribbe, A. E.; Hallenga, K.; Jacob, J.; Thiyagarajan, P. Proc. Nat. Ac. Sci. 2002, 99, 6487-6492.Google Scholar
[7] (a) Marsh, A.; Nolen, E. G.; Gardinier, K. M.; Lehn, J.-M.
Tet. Lett.
1994, 35, 397–400. (b) Petersen, P. M.; Wu, W.; Fenlon, E. E.; Kim, S.; Zimmerman, S. C. Bioorganic and Medicinal Chem. 1996, 4, 1107-1112.Google Scholar
[8] (a) Yang, C.-W.; Hwang, I.-S.; Chen, Y. F.; Chang, C. S.; Tsai, D. P.
Nanotechnology
2007, 18, 1–8. (b) Kasumov, A. Y.; Klinov, D. V.; Roche, P. E.; Gueron, S.; Bouchiat, H. Appl. Phys. Lett. 2004, 84, 1007-1009.Google Scholar