Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T15:57:15.419Z Has data issue: false hasContentIssue false

Novel Polar-fluoropolymer Blends with Tailored Nanostructures for High Energy Density and Low Loss Capacitor Applications

Published online by Cambridge University Press:  22 February 2012

Shan Wu
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
Minren Lin
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
David S-G. Lu
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
Lei Zhu
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44016
Q. M. Zhang
Affiliation:
Department of Electrical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Dielectric polymers with high energy density with low loss at high electric fields are highly desired for many energy storage and regulation applications. A polar-fluoropolymer blend consisting of a high energy density polar-fluoropolymer of poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) with a low dielectric loss polymer of poly(ethylene-chlorotrifluoroethylene) (ECTFE) was developed and investigated. We show that the two polymers are partially miscible which leads to blends with high energy density and low loss. Moreover, by introducing crosslinking to further tailor the nano-structures of the blends a markedly reduction of losses in the blend films at high field can be achieved. The crosslinked blend films show a dielectric constant of 7 with a dielectric loss of 1% at low field. Furthermore, the blends maintain a high energy density and low loss (∼3%) at high electric fields (> 250 MV/m).

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sarjeant, W. J., Zirnheld, J., and MacDougall, F. W., IEEE Trans. Plasma Sci. 26, 1368 (1998).Google Scholar
2. Cao, Y., Irwin, P. C., and Younsi, K., IEEE Trans. Diel. El. Ins. 11, 797 (2004).Google Scholar
3. Rabuffi, M. and Picci, G., IEEE Trans. Plasma Sci. 30, 1939 (2002).Google Scholar
4. Chu, B. J., Zhou, X., Ren, K. L., Neese, B., Lin, M. R., Wang, Q., Bauer, F., and Zhang, Q. M., Science 313, 1887 (2006).Google Scholar
5. Zhou, X., Chu, B. J., Neese, B., Lin, M. R., and Zhang, Q. M., IEEE Trans. Diel. El. Ins. 14 (5), 1133 (2007).Google Scholar
6. Zhou, X., Zhao, X. H., Suo, Z. G., Zou, C., Runt, J., Liu, S., Zhang, S. H., and Zhang, Q. M., Appl. Phys. Lett. 94, 162901 (2009).Google Scholar
7. Nalwa, H., Ferroelectric Polymers: Chemistry, Physics, and Applications. (Marcel Dekker, Inc., New York, 1995), p.895.Google Scholar
8. Zhang, S. H., Zhang, N. Y., Huang, C., Ren, K. L., and Zhang, Q. M., Adv. Mater. 17, 1897 (2005).Google Scholar
9. Pu, H. T., Tang, X. Z., and Xu, X. M., Polym. Int. 45, 169 (1998).Google Scholar
10. Sinha, J. K., J. Sci. Instrum. 42, 696 (1965).Google Scholar
11. Bai, Y., Cheng, Z. Y., Bharti, V., Xu, H. S., and Zhang, Q. M., Appl. Phys. Lett. 76 (25), 3804 (2000).Google Scholar
12. Yamada, T., Ueda, T., and Kitayama, T., J. Appl. Phys. 53 (6), 4328 (1982).Google Scholar
13. Chen, Q., Wang, Y., Zhou, X., Zhang, Q. M., and Zhang, S. H., Appl. Phys. Lett. 92, 142909 (2008).Google Scholar
14. Zhang, Q. M., Pan, W. Y., Jang, S. J., and Cross, L. E., J. Appl. Phys. 64 (11), 6445 (1988).Google Scholar
15. Zhou, X., Chu, B. J. and Zhang, Q. M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 1540 (2006).Google Scholar
16. Mueller, V. and Zhang, Q. M., Appl. Phys. Lett. 72 (21), 2692 (1998).Google Scholar
17. Damjanovic, D. and Demartin, M., J. Phys. D. Appl. Phys. 29 (7), 2057 (1996).Google Scholar
18. Kepler, R. G. and Anderson, R. A., Mol. Cryst. Liq. Cryst. 106 (3-4), 345 (1984).Google Scholar
19. Kepler, R. G., Anderson, R. A., and Lagasse, R. R., Phys. Rev. Lett. 48 (18), 1274 (1982).Google Scholar
20. Li, Z. M., Wang, Y. H., and Cheng, Z. Y., Appl. Phys. Lett. 88 (6), 062904 (2006).Google Scholar