No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Arrays of Ni nanorods were electrodeposited into alumina oxide templates with various lengths (11-50 micro meter) and fixed pore diameter (150 nm). The magnetization behavior of these rods were investigated with ferromagnetic resonance (FMR) techniques; fixed frequency (conventional FMR) and swept frequency (Network Analyzer FMR). Both resonance spectra indicate the presence of strong dipolar interaction between the nanorods. The fundamental magnetic parameters like spontaneous magnetization, gyromagnetic ratio, and magnetic anisotropies of the nanorods were derived from the angular variation of resonance field data. Further, the use of nanorods as a tunable stop-band notch-filter in a coplanar waveguide geometry has been assessed. The stop-band frequency (fr) is observed to be tunable up to 24 GHz with an applied field (H) of up to 6 kOe. The theoretical fitting of fr(H)data to resonance relation yield values of effective field (Heff) and gyromagnetic ratio, which are a little higher than the conventional FMR results.