Article contents
Novel Medical Ferrite Nanobeads with Bioactive Molecules Immobilized Strongly onto the Surfaces
Published online by Cambridge University Press: 01 February 2011
Abstract
Under neutral conditions (pH=7-9) and temperature as low as 4°C we successfully synthesized ferrite nanoparticles with an intermediate structure between Fe3O4 and γ -Fe2O3 from an aqueous solution. These experimental conditions enabled us to immobilize even very unstable bioactive molecules onto the surfaces of the ferrite nanoparticles during their synthesis. The bioactive molecules were strongly fixed onto the ferrite surface intermediated by specific amino-acids or related-structure molecules each having pairs of carboxyl (COOH) groups. The COOH group pair was found to make a chemical bond with the ferrite particles. Utilizing the strong bond between such molecules and ferrites, we successfully prepared bioactive ferrite nanobeads where the ferrite nanoparticles were encapsulated in a polymer that exhibited negligible non-specific absorption of proteins. We also succeeded in fixing bioactive molecules onto the surfaces of the polymer coating of the ferrite nanobeads. We describe promising applications of our novel bioactive ferrite nanobeads such as high performance magnetic carriers for bio-screening, hypothermia, MRI contrast enhancement and magnetic drug delivery.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
- 1
- Cited by