Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:47:53.241Z Has data issue: false hasContentIssue false

Novel Growth Techniques for the Fabrication of Photonic Integrated Circuits

Published online by Cambridge University Press:  26 February 2011

G. Coudenys
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
G. Vermeire
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
Y. Zhu
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
I. Moerman
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
L. Buydens
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
P. Van Daele
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
P. Demeester
Affiliation:
University of Gent-IMEC, Laboratory of Electromagnetics and Acoustics, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
Get access

Introduction:

The fabrication of Photonic Integrated Circuits (PIC) requires the development of advanced growth and processing techniques. One of the major problems in the fabrication of PICs is the monolithic integration of passive and active waveguiding structures with a different bandgap. This is schematically shown in figure 1 where a laser, waveguide and detector are integrated on the same substrate. The following relationship between the different bandgaps is required : Eg (detector) < Eg (laser) < Eg (waveguide). One of the most advanced PICs is certainly a coherent receiver chip where a local DFB laser oscillator is integrated with a Y-junction, 3-dB splitter and balanced photodetector pair [1,2,3]. Current integration schemes are mostly based on the use of different epitaxial growth steps to obtain the different bandgap materials on the same substrate. In order to improve yield and performance it is required to reduce the number of growth steps by using special growth techniques. In this paper we will briefly describe some of the recent developments in advanced growth techniques. A more detailed description will be given of our recent work based on selective growth and shadow masked growth using Metal Organic Vapour Phase Epitaxy (MOVPE).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Koch, T. L., Koren, U.. IEEE Journ. of Quantum Electr., vol. 27, no. 3, 641 (1991)CrossRefGoogle Scholar
[2] Koch, T. L., Koren, U., Gnali, R. P., Choa, F. S., Hemandez-Gil, F., Burras, C. A., Young, M. G., Oron, M., Miller, B. I., Electron. Lett., vol. 25, 1621 (1989)CrossRefGoogle Scholar
[3] Takeuchi, H., Kasaya, K., Kondo, Y., Yasaka, H., Oe, K., Imamura, Y., IEEE Photon. Techn. Lett., vol.1, no. 11, 398 (1989)Google Scholar
[4] Rose, B., Remiens, D., Hornung, V., Robein, D., Joum. of Cryst. Growth 107, 850, (1991)CrossRefGoogle Scholar
[5] Tomiyama, C., Kuramata, A., Yamazaki, S., Nakajima, K., Joum. of Cryst. Growth 84, 115 (1987)Google Scholar
[6] Demeester, P., Van Daele, P., Ackaert, A., Baets, R., Inst. Phys. Conf. Ser. No.91, chapter 3, 183 (1990) presented at Int Symp. GaAs and Related Compounds, Heraklion, Greece 1987Google Scholar
[7] Kayser, O., Westphalen, R., Opiu, B., Balk, P., Joum. of CrysL Growth 112, 111 (1991)Google Scholar
[8] Galeuchet, Y. D., Roentgen, P., Joum. of Cryst Growth 107, 147 (1991)Google Scholar
[9] Blaauw, C., Szaplonczay, A., Fox, K., Emmerstorfer, B., Journ. of Cryst Growth 77, 326 (1986)CrossRefGoogle Scholar
[10] Azoulay, R., Bouadma, N., Bouley, J. C., Dugrand, L., Joum. of Cryst. Growth 55, 229 (1981)CrossRefGoogle Scholar
[11] Carlsson, Jan-Otto, Critical reviews in Solid State and Materials Sciences, vol. 16 / issue3, 161 (1990)Google Scholar
[12] Wang, Y. L., Feygenson, A., Hamm, R. A., Ritter, D., Weiner, J. S., Temkin, H., Panish, M. B., Appl. Phys. Lett. 59 (4), 443 (1991)Google Scholar
[13] Murata, M., Katsuyama, T., Hayashi, H., Inst. Phys. Conf. Ser. No. 112, chapter 3, 181 (1990) presented at Int. Symp. GaAs and Related Compounds, Jersey, 1990Google Scholar
[14] Colas, E., Shahar, A., Soole, B. D., Tomlinson, W. J., Hayes, J. R., Caneau, C., Bhat, R., Joum. of Cryst. Growth 107, 226 (1991)Google Scholar
[15] Colas, E., Caneau, C., Frei, M., Clausen, E. M., Quinn, W. E., Kim, M. S., Appl. Phys. Lett. 59 (16), 2019 (1991)Google Scholar
[16] Fekete, D., Burnham, R. D., Scifres, D.R., Streifer, W., Yigling, R. D., Appl. Phys. Lett 38 (8), 607 (1981)CrossRefGoogle Scholar
[17] Katsuyama, T., Tischler, M. A., Moore, D. J., Bedair, S. M., Joum. of Cryst Growth 77, 85 (1986)CrossRefGoogle Scholar
[18] Kato, T., Sasaki, T., Kida, N., Komatsu, K., Mito, I., proceedings of 17th European Conf. on Optical Comm. (ECOC '91), regular papers, 429 Google Scholar
[19] Demeester, P., Buydens, L., Van Daele, P., Appl. Phys. Lett. 57 (2), 168 (1990)Google Scholar
[20] Demeester, P., Moerman, I., Zhu, Y., Van Daele, P., Thomson, J., presented at SPIE's Int. Conf. on ‘Physical concepts of Materials for Novel Optoelectronic Device Applications’, 28oct-2nov., Aachen, Germany Google Scholar
[21] De Vlamynck, K., Coudenys, G., Demeester, P., to be published in Appl. Phys. LettGoogle Scholar
[22] Vermeire, G., Demeester, P., Haelvoet, K., Van Der Cruyssen, B., Coudenys, G., Van Daele, P., to be published in the proceedings of 18th Int Symp. on “Gallium and rel. compounds” sept 1991, Seattle, USA Google Scholar
[23] Bossi, D. E., Goodhue, W. D., Johnson, L. M., Rediker, R. H., IEEE Joum. of Quantum Electr., vol. 27, no.3, 687 (1991)Google Scholar