Published online by Cambridge University Press: 01 February 2011
In this work a novel technique to create nanometer sized air gaps for high frequency (HF) mechanical resonators will be presented. The technique is based on the narrowing of initially wide gaps with a conformal “narrowing” layer. The novelty of this technique is that it enables the creation of narrow high-aspect ratio gaps (e.g. 100nm gaps in 10μm thick layers) without the need for complex lithography or high aspect ratio etching. Furthermore, the electrodes and the resonator itself can be patterned in a single processing step. The process methodology will be explained and validation experiments in a silicon-germanium (SiGe) based technology will be shown. This technology uses low temperature (∼450°C) poly silicon-germanium (SiGe) as the structural layer, which can be processed above CMOS, and therefore allows the fabrication of MEM devices above CMOS.