Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:49:27.814Z Has data issue: false hasContentIssue false

A Novel GaAs Bipolar Transistor Structure with GaInP-Hole Injection Blocking Barrier

Published online by Cambridge University Press:  26 February 2011

W. Pletschen
Affiliation:
Fraunhofer-Inst, für Angewandte Festkörperphysik, D-7800 FREIBURG, Germany
K. H. Bachem
Affiliation:
Fraunhofer-Inst, für Angewandte Festkörperphysik, D-7800 FREIBURG, Germany
T. Lauterbach
Affiliation:
Fraunhofer-Inst, für Angewandte Festkörperphysik, D-7800 FREIBURG, Germany
Get access

Abstract

GaAs bipolar transistors of different emitter types have been fabricated from MOCVD grown lattice matched Ga0.5In0.5 P/GaAs layer structures using carbon for heavy base doping (p=2×1019 cm−3). Besides conventional heterojunction bipolar transistors we also investigated tunneling emitter bipolar transistors having 2 and 5 nm thin GalnP layers between emitter and base, which act as a hole repelling potential barrier in the valence band. Current gains up to 115 have been obtained at collector current densities of 104 A/cm2 even for this heavy base doping. All devices show an almost ideal output characteristics with large Early voltage and small offset voltage. From the temperature dependence of the collector current a small effective conduction band barrier at the heterointerface is determined which hardly affects electron injection into the base.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroemer, H., Proc. IRE. vol. 45, p. 1535 (1957)Google Scholar
2. Asbeck, P. M., Chang, M. F., Corcoran, J. J., Jensen, J. F., Nottenburg, R. N., Oki, A., and Yuan, H. T., Technical Digest IEEE GaAs IC Symposium 1991, P. 7 CrossRefGoogle Scholar
3. Grinberg, A. A., Shur, M. S., Fischer, R. J., and Morkoc, H., IEEE Trans. Electron Devices ED–31 (1984)1758 Google Scholar
4. Xu, J. and Shur, M., IEEE Electron Dev. Lett. 7 (1986) 416 Google Scholar
5. Kroemer, H., J. Vac. Sci. Technol. Bl (1983) 126 Google Scholar
6. Chen, J., Sites, J. R., Spain, I. L., Hafich, M. J., and Robinson, G. Y., Appl. Phys. Lett. 58 (1991) 744 Google Scholar
7. Lauterbach, T., Pletschen, W., and Bachem, K. H., IEEE Trans. Elec. Dev., ace. for publ.Google Scholar
8. deLyon, T. J., Woodall, J. M., Kirchner, P. D., Mclnturff, D. T., Scilla, G. J., and Cardone, F., J. Vac. Sci. Technol. B9 (1991) 136 Google Scholar
9. Bachem, K. H., Lauterbach, T., Maier, M., Pletschen, W., and Winkler, K., Inst. Phys. Conf. Ser. (GaAs & Related Compounds, 1991), ace. for pubiicationGoogle Scholar
10. Tischler, M. A., Barette, H., Kuech, T. F., and Wang, P. J., J. Appl. Phys. 65 (1989) 4928 Google Scholar
11. Lauterbach, T., Shur, M. S., Bachem, K. H., and Pletschen, W., Proc. Int. Semicond. Dev. Res. Symp., ace. for publicationGoogle Scholar
12. Zwicknagl, P., Ablaβmeier, U., Schaper, U., Schleicher, L., Siweris, H., Bachem, K. H., Lauterbach, T., and Pletschen, W., to be publishedGoogle Scholar