Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:36:24.627Z Has data issue: false hasContentIssue false

Novel Conjugated Polymer/Silica Nanocomposites with Tunable Mesostructure Synthesized by a Robust Pd Catalyst

Published online by Cambridge University Press:  10 February 2011

Byron McCaughey
Affiliation:
300 Lindy Boggs, Chemical Engineering Department, Tulane University, New Orleans, LA 70118
Chris Costello
Affiliation:
2015 Percival Stern, Chemistry Department, Tulane University, New Orleans, LA 70118
J. Eric Hampsey
Affiliation:
300 Lindy Boggs, Chemical Engineering Department, Tulane University, New Orleans, LA 70118
Donghai Wang
Affiliation:
300 Lindy Boggs, Chemical Engineering Department, Tulane University, New Orleans, LA 70118
Chaojun Li
Affiliation:
2015 Percival Stern, Chemistry Department, Tulane University, New Orleans, LA 70118
Yunfeng Lu
Affiliation:
300 Lindy Boggs, Chemical Engineering Department, Tulane University, New Orleans, LA 70118
Get access

Abstract

Conjugated poly(2,5-thienylene ethynylene) (PTE)/silica nanocomposites with cubic and lamellar mesostructures have been synthesized. Surfactant directed assembly coorganized 2,5-diiodothiophene monomer and palladium-based catalyst within a silica matrix. Subsequent polymerization initiated by exposing the monomer/catalyst/silica nanostructures to acetylene gas resulted in the formation of an ordered, mesostructured poly(2,5-thienylene ethynylene)/silica nanocomposite as determined by XRD, UV-vis, FTIR, and TEM experiments. Mesostructured PTE with 287m2/g surface area is obtained after silica removal. Further polymerization of PTE oligomers occurs after exposure to acetylene gas due to active Pd catalyst attached to the polymer chains. This novel approach provides a unique route to synthesize mesostructured conjugated polymer/inorganic nanocomposites and porous mesostructured PTE.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eckert, H., Ward, M., Chem. Mater. 13, 3059 (2001).Google Scholar
2. Bradley, D. D. C., Adv. Mater. 4, 756 (1992).Google Scholar
3. Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L., Meijer, E. W., Polymer 37, 5017 (1996).Google Scholar
4. Davey, A. P., Elliott, S., O'Connor, O., Blau, W., J. Chem. Soc., Chem. Commun., 1433 (1995).Google Scholar
5. Tormos, G. V., Nugara, P. N., Lakshmikantham, M. V., Cava, M. P., Synth. Met. 53, 271 (1993).Google Scholar
6. Gal, Y. S., Jung, B., Choi, S. K., J. Appl. Polym. Sci. 42, 1793 (1991).Google Scholar
7. Nguyen, T.Q., Wu, J., Tolbert, S. H., Schwartz, B. J., Adv. Mater. (Weinheim, Ger.) 13, 609 (2001).Google Scholar
8. Wu, C.G., Bein, T., Science 266, 1013 (1994).Google Scholar
9. Lin, V.S.Y., Radu, D. R., Han, M.K., Deng, W., Kuroki, S., Shanks, B. H., Pruski, M., J. Am. Chem. Soc. 124, 9040 (2002).Google Scholar
10. Martin, C. R., Science 266, 1961 (1994).Google Scholar
11. Cardin, D. J., Constantine, S. P., Gilbert, A., Lay, A. K., Alvaro, M., Galletero, M. S., Garcia, H., Marquez, F., J. Am. Chem. Soc. 123, 3141 (2001).Google Scholar
12. Sellinger, A., Weiss, P. M., Anh, N., Lu, Y., Assink, R. A., Gong, W., Brinker, C. J., Nature 394, 256 (1998).Google Scholar
13. Giesa, R., Macromol, J.. Sci., Rev. Macromol. Chem. Phys. C36, 631 (1996).Google Scholar
14. Li, C.J., Slaven, W. T., John, V. T., Banerjee, S., Chem. Commun 16, 1569 (1997).Google Scholar
15. Casalnuovo, A. L., Calabrese, J. C., J. Am. Chem. Soc. 112, 4324 (1990).Google Scholar
16. Israelachvili, J., in Intermolecular and Surface Forces, 2nd ed ed., Academic Press Inc., San Diego, 1992.Google Scholar
17. Sellinger, A., Weiss, P. M., Nguyen, A., Lu, Y., Assink, R. A., Brinker, C. J., Mater. Res. Soc. Symp. Proc. 519, 95 (1998).Google Scholar
18. Kresge, C., Leonowicz, M., Roth, W., Vartuli, C., Beck, J., Nature 359, 710 (1992).Google Scholar
19. Brinker, C. J., Lu, Y., Sellinger, A., Fan, H., Adv. Mater. 11, 579 (1999).Google Scholar
20. Crabtree, R. H., in The Organometallic Chemistry of the Transition Metals, 3rd ed., Wiley-Interscience, New York, 2001.Google Scholar
21. Lu, Y., Cao, G., Kale, R. P., Prabakar, S., Lopez, G. P., Brinker, C. J., Chem. Mater. 11, 1223 (1999).Google Scholar
22. Ito-Akita, K., Nishina, N., Asai, Y., Ohno, H., Ohtake, T., Takamitsu, Y., Kato, T., Polymers for Advanced Technologies 11, 529 (2000).Google Scholar
23. Huo, Q., Margolese, D. I., Stucky, G. D., Chem. Mater. 8, 1147 (1996).Google Scholar
24. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H., Zink, J. I., Nature (London) 389, 364 (1997).Google Scholar
25. Shi, G., Jin, S., Xue, G., Li, C., Science 267, 994 (1995).Google Scholar
26. Slaven, W. T. I. V., Li, C.J., Chen, Y.P., John, V. T., Rachakonda, S. H., J. Macromol. Sci., Pure Appl. Chem. A36, 971 (1999).Google Scholar
27. Jestin, I., Frere, P., Mercier, N., Levillain, E., Stievenard, D., Roncali, J., J. Am. Chem. Soc. 120, 8150 (1998).Google Scholar