Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:47:56.494Z Has data issue: false hasContentIssue false

Novel Chemical Route to Size-Controlled Ta(0) and Ru-Ta Nanoparticles in Ionic Liquids

Published online by Cambridge University Press:  25 October 2012

Inga S. Helgadottir
Affiliation:
CNRS-UMR 5265, 43 Bd du 11 Novembre 1918, 69616, Villeurbanne Cedex, France. CEA–LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
Philippe P. Arquillière
Affiliation:
CNRS-UMR 5265, 43 Bd du 11 Novembre 1918, 69616, Villeurbanne Cedex, France. CEA–LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
Paul S. Campbell
Affiliation:
CNRS-UMR 5265, 43 Bd du 11 Novembre 1918, 69616, Villeurbanne Cedex, France.
Catherine C. Santini*
Affiliation:
CNRS-UMR 5265, 43 Bd du 11 Novembre 1918, 69616, Villeurbanne Cedex, France.
P.-H. Haumesser
Affiliation:
CEA–LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
*
*[email protected] Fax: 33(0)472431795; Tel: 33(0)472431810
Get access

Abstract

Metallic nanoparticles under 10 nm are of particular interest for the microelectronics industry. However, there is a lack of convenient synthetic routes to control their size Oxophilic metals, such as Ta, are also of high interest, however, the high oxophilicity and melting point makes the synthesis of such nanoparticles challenging. Making use of imidazolium-based ionic liquids, monodisperse zero-valent tantalum nanoparticles (Ta(0)NPs) have been successfully synthesised at room temperature by reduction of tris(neopentyl)neopentylidenetantalum(V). Furthermore; well size-controlled bimetallic Ru-Ta NPs have also been synthesized.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bönnemann, H., Nagabhushana, K.S. and Richards, R.M., in Nanoparticles and Catalysis, edited by Astruc, D. (Wiley-VCH, Weinheim, 2008), 4992 Google Scholar
Ott, L.S. and Finke, R.G., Coord. Chem. Rev. 251(9-10), 10751100 (2007)10.1016/j.ccr.2006.08.016CrossRefGoogle Scholar
Cho, S.-W., Shim, G., Park, J.-S., Kim, J.-S., Bae, I.-S., Yoon, J.-S. and Jeong, S.-M., Met. Mater. Int. 12(1), 5156 (2006)10.1007/BF03027523CrossRefGoogle Scholar
Nersisyan, H.H., Lee, J.H. and Won, C.W., Combust. Flame 142(3), 241248 (2005)10.1016/j.combustflame.2005.03.012CrossRefGoogle Scholar
Barr, J.L., Axelbaum, R.L. and Macias, M.E., J. Nanopart. Res. 8(1), 1122 (2006)10.1007/s11051-005-8336-2CrossRefGoogle Scholar
Cui, Z.L., Zhang, Z.K., Hao, C.C., Dong, L.F., Meng, Z.G. and Yu, L.Y., Thin Solid Films 318(1-2), 7682 (1998)10.1016/S0040-6090(97)01143-7CrossRefGoogle Scholar
Dupont, J. and Scholten, J.D., Chem. Soc. Rev. 39(5), 17801804 (2010)10.1039/b822551fCrossRefGoogle Scholar
Gutel, T., Garcia-Anton, J., Pelzer, K., Philippot, K., Santini, C.C., Chauvin, Y., Chaudret, B. and Basset, J.-M., Journal of Materials Chemistry 17(31), 32903292 (2007)10.1039/b706139kCrossRefGoogle Scholar
Gutel, T., Santini, C.C., Philippot, K., Padua, A., Pelzer, K., Chaudret, B., Chauvin, Y. and Basset, J.-M., Journal of Materials Chemistry 19(22), 36243631 (2009)10.1039/b821659bCrossRefGoogle Scholar
Campbell, P.S., Santini, C.C., Bouchu, D., Fenet, B., Philippot, K., Chaudret, B., Padua, A.A.H. and Chauvin, Y., Phys. Chem. Chem. Phys. 12(16), 4217–23 (2010)10.1039/b925329gCrossRefGoogle Scholar
Salas, G., Podgorsek, A., Campbell, P.S., Santini, C.C., Padua, A.A.H., Costa, G.M.F., Philippot, K., Chaudret, B. and Turmine, M., Phys. Chem. Chem. Phys. 13(30), 1352713536 (2011)10.1039/c1cp20623kCrossRefGoogle Scholar
Arquillière, P., Helgadottir, I.S., Santini, C.C., Haumesser, P.-H., Aouine, M., Massin, L. and Rousset, J.-L., submittedGoogle Scholar
Arquillière, P., Santini, C.C., Helgadottir, I.S. and Haumesser, P.-H., n 11 5374Google Scholar
Magna, L., Chauvin, Y., Niccolai, G.P. and Basset, J.M., Organometallics 22(22), 44184425 (2003)10.1021/om021057sCrossRefGoogle Scholar
Pertici, P., Simonelli, G., Vitulli, G., Deganello, G., Sandrini, P. and Mantovani, A., Journal of the Chemical Society-Chemical Communications (4), 132-133 (1977)10.1039/C39770000132CrossRefGoogle Scholar
Migowski, P., Teixeira, S.R., Machado, G., Alves, M.C.M., Geshev, J. and Dupont, J., Journal of Electron Spectroscopy and Related Phenomena 156 195199 (2007)10.1016/j.elspec.2006.11.027CrossRefGoogle Scholar
Migowski, P., Machado, G., Texeira, S.R., Alves, M.C.M., Morais, J., Traverse, A. and Dupont, J., Phys. Chem. Chem. Phys. 9(34), 48144821 (2007)10.1039/b703979dCrossRefGoogle Scholar
Migowski, P. and Dupont, J., Chem. Eur. J. 13(1), 3239 (2007)10.1002/chem.200601438CrossRefGoogle Scholar
Wang, Y., Cui, Z. and Zhang, Z., Mater. Lett. 58 30173020 (2004)10.1016/j.matlet.2004.05.031CrossRefGoogle Scholar
Massalski, M.J.L. Bennett, T.B. Baker, L.H. H., Binary Alloy Phase Diagrams. Vol. I and II. 1986)Google Scholar