Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:03:28.859Z Has data issue: false hasContentIssue false

A Novel Approach to the Assessment of Semiconductor Hetero-Interfaces in Multilayer Structures

Published online by Cambridge University Press:  28 February 2011

J.S. Rimmer
Affiliation:
(Dept. of Electrical Engineering and Electronics)The Centre for Electronic Materials, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, United Kingdom
M Missous
Affiliation:
(Dept. of Electrical Engineering and Electronics)The Centre for Electronic Materials, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, United Kingdom
A.R. Peaker
Affiliation:
(Dept. of Electrical Engineering and Electronics)The Centre for Electronic Materials, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, United Kingdom
B. Hamilton
Affiliation:
(Dept of Pure and Applied Physics) The Centre for Electronic Materials, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, United Kingdom
Get access

Abstract

We demonstrate the novel use of CV simulation to determine the level of charge at each interface in multilayer GaAs/AlGaAs heterostructures. The gettering of charged centres at the earliest grown interfaces is quantitatively appraised and the parallel application of PL decay lifetime measurements determines their effectiveness as recombination centres. A direct relationship is found between the magnitude of the charged states and the recombination velocity. Estimates of a 1eV activation energy and a hole capture cross section of 10−15 cm2 were also obtained. This suggests that the dominant recombination centre could be observed as a hole trap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kroemer, H., and Wu-Yi, Chien, (1981), Solid State Electron. 24, 655.Google Scholar
[2] Matsumoto, T., Bhattacharya, P.K., Ludowise, M.J., (1983), Appl. Phys. Lett. 42(1), 52.Google Scholar
[3] McAfee, S.R., Lang, D.V., Tsang, W.T., (1982), Appl. Phys Lett. 40(6), 520.Google Scholar
[4] Ohno, H., Akatsu, Y., Hashlyume, T., Hasegawa, H., Sano, N., Kato, H., Nakayama, M., (1985), J. Vac. Sci. Technol. B3(4), 943.Google Scholar
[5] Nelson, R.J., and Sobers, R.G., (1978a), Appl. Phys. Lett. 32(11), 761.Google Scholar
[6] Sermage, B., Pereira, M.F., Alexandre, F., Beerens, J., Azoulay, R., Kobayashi, N., (1987), Gallium Arsenide and Related Compounds, Heraklion.Google Scholar
[7] Sermage, B., Alexandre, F., Lievin, J.L., Azoulay, R., El, Kalm M., Le, Person H., and Marzin, J.Y., (1985), Gallium Arsenide and Related Compounds, Rilger, 345.Google Scholar
(8) Dawson, P., and Woodbridge, K., (1984), Appl. Phys. Lett. 45(11), 1227.Google Scholar
[9] Many, A., Goldstein, Y., Grover, N.R., (1971), Semiconductor Surfaces, North-Holland, Amsterdam, 259.Google Scholar
[10] Johnson, W.C. and Panousis, P.T. (1971), IEEE Trans. Electron. Dev. ED-18, 965.Google Scholar
[11] Kennedy, D.P., Murley, P.C., and Kleinfelder, W. (1968), IBM J. Res. Dev. 12, 399.Google Scholar
[12] 'tHooft, C.W., and Colak, S., (1986), Appl. Phys. Lett. 48(22), 1525.Google Scholar
[13] Kroemer, H., Chien Wu-Yi, Harris Jr. J.S., Edwall, D.D., (1980), AppI. Phys. Lett. 36, 295.Google Scholar
[14] Leu, L.Y. and Forrest, S.R., (1988), J. Appi. Phys., 64(10), 5030.Google Scholar
[15] Watanabe, M.O., Yoshida, J., Mashita, M., Nakanisl, T., Hojo, A., (1985), J. Appl. Phys., 57(12), 5340.Google Scholar
[16] Rimmer, J.S., Hawkins, I.D., Hamilton, B., Peaker, A.R., (1989), “III-V Heterostructures for Electronic/Photonic Devices”, MRS Proceedings Vol. 145, 475.Google Scholar
[17] Kimerllng, L.C., (1974), J. Appl. Phys. 45(4), 1839.Google Scholar
[18] Subramanian, S., Vengurlekar, A.S., (1988), J. Appl. Phys. 64(3), 1552.Google Scholar