No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Using scanning probe microscopy, we have written nonvolatile electronic nanofeatures in the metallic perovskite oxide SrRuO3. The structures were written in epitaxial thin film Pb(Zr0.52Ti0.48)O3 (PZT) / SrRuO3 heterostructures by locally switching the polarization field of the ferroelectric PZT layer with an atomic force microscope (AFM). The resulting field effect changes the sheet resistance of the SrRuO3 layer by up to 300 ohms per square. Using the AFM as an electric field microscope, it is also possible to visualize the charge distribution of the written areas on the PZT surface. Large areas of up to 100 μm2 have been polarized and imaged with submicrometer resolution, with the smallest features having linewidths of 170 nm. This approach to local electronic doping is reversible and allows one to write nonvolatile submicron electronic features in two dimensions without lithographic steps or permanent electrical contacts required.