Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:47:33.608Z Has data issue: false hasContentIssue false

Nonvolatile memory MOS capacitors made of CdSe embedded ZrHfO high-k gate dielectric

Published online by Cambridge University Press:  20 May 2013

Chi-Chou Lin
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, TX 77843-3122, U.S.A.
Get access

Abstract

MOS capacitor composed of nc-CdSe embedded ZrHfO high-k gate dielectric stack was fabricated and characterized for nonvolatile memory functions. Detailed material and electrical properties have been investigated. With a large charge trapping capability, this kind of device can trap electrons or holes depending on the polarity and magnitude of the applied gate voltage. For the same stress time, the device trapped more holes than electrons under the same magnitude of gate voltage but different polarity. The negative differential resistance peak was observed at the room temperature due to the Coulomb blockade effect. The charge trapping mechanism was delineated with the constant voltage stress test. After 10 years of storage, about 56% of trapped charges still remain in the device.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Cabbe, E. F., and Chan, K., Appl. Phys. Lett. vol.68, p. 1377, 1996.CrossRefGoogle Scholar
Lin, C. H., Kuo, Y., J. Electrochem. Soc. vol. 158, H756, 2011.CrossRefGoogle Scholar
The International Technology Roadmap for Semiconductors. Semiconductor Industry Association, December 2003.Google Scholar
Kuo, Y., Lu, J., Chatterjee, S., Yan, J., Kim, H. C., Yuan, T., Kuo, W., Paterson, J., and Gardner, M., Electrochem. Soc. Trans. vol. 1, p. 447, 2006.Google Scholar
Yan, J., Kuo, Y., and Lu, J., Electrochem. Solid-State Lett. vol. 10, H8199 2007.Google Scholar
Lee, J. J. and Kwong, D. L., IEEE Trans. Electron Devices vol. 52, p. 507, 2005.CrossRefGoogle Scholar
Lin, C. C. and Kuo, Y., J. Solid State Sci. and Technol. vol. 2, Q16, 2013.CrossRefGoogle Scholar
Dovgoshei, N. I., Shtilikha, M. V., and Chepur, D. V., Izvestiya VUZ. Fizika vol. 11, p. 132, 1968.Google Scholar
Hauser, J. and Ahmed, K., Characterization and Metrology for ULSI Technology p. 235, AIP, New York 1998.Google Scholar
Zhan, N., Poon, M. C., Kok, C. W., Ng, K. L., and Wong, H., J. Electrochem. Soc. vol. 150, F200, 2003.CrossRefGoogle Scholar
Morant, C., Galan, L., and Sanz, J. M., Surf. and Interface Anal.vol. 16, p. 304, 1990.CrossRefGoogle Scholar
Cho, M. H., Roh, Y. S., Roh, C. N., Roh, K., Nahm, S. W., Nahm, D. H., Lee, J. H., Lee, N. I., and Fujihara, K., Appl. Phy. Lett.vol. 81 p. 472, 2002.CrossRefGoogle Scholar
Lin, C. C. and Kuo, Y., J. Vac. Sci. Technol. B vol. 31, p. 030605, 2013.CrossRefGoogle Scholar
Katari, J. E. B., Colvin, V. L., Alivisatos, A. P., J. Phys. Chem. vol. 98, p. 4109, 1994.CrossRefGoogle Scholar
Peng, X. S., Zhang, J., Wang, X. F., Wang, Y. W., Zhao, L. X., Meng, G. W., Zhang, L. D., Chem. Phys. Lett. vol. 343 p. 470, 2001.CrossRefGoogle Scholar
Vesely, C. J. and Langer, D. W., Phys. Rev. B vol. 4, p. 451, 1971.CrossRefGoogle Scholar
Lin, C. H. and Kuo, Y., Electrochem. Solid-State Lett. vol. 13, H83, 2010.CrossRefGoogle Scholar
Lin, C. H. and Kuo, Y., J. Appl. Phys. vol. 110, p. 024101, 2011.CrossRefGoogle Scholar
Lu, J., Lin, C. H., and Kuo, Y., J. Electrochem. Soc. vol. 155, H386, 2008.CrossRefGoogle Scholar
Shalchian, M., Grisolia, J., Ben Assayag, G., Coffin, H., Atarodi, S. M., Claverie, A., Solid State Electronics. vol. 49, p. 1198, 2005.CrossRefGoogle Scholar
Yang, C. H., Kuo, Y., Lin, C. H., and Kuo, W., Mater. Res. Soc. Symp. Proc. vol. 1337, Q01, 2011.CrossRefGoogle Scholar
Kuo, Y., Liu, X., Yang, C. H., and Lin, C. C., Mater. Res. Soc. Symp. Proc. vol. 1430, p. 21, 2012.CrossRefGoogle Scholar
Yang, C. H., Kuo, Y., Lin, C. H., and Kuo, W., Electrochem. Solid-State Lett. vol. 14, H50, 2011.CrossRefGoogle Scholar
Lu, J., Lin, C. H., and Kuo, Y., J. Electrochem. Soc. vol. 155, H386, 2008.CrossRefGoogle Scholar
Likharev, K. K., Proc. IEEE vol. 87, p. 606, 1999.CrossRefGoogle Scholar
Shalchian, M., Grisolia, J., Assayag, G. B., Coffin, H., Atarodi, S. M., and Claverie, A., Solid-State Electronics vol. 49, p. 1198 2005.CrossRefGoogle Scholar
Kouvatsos, D. N., Ioannou-Souloeridis, V., and Nassiopoulou, A. G., Appl. Phys. Lett. vol.82, p. 397, 2003.CrossRefGoogle Scholar
Hiramoto, T., Majima, H., Saitoh, M., Mater. Sci. and Eng. B vol. 101, p. 24, 2003.CrossRefGoogle Scholar
Lin, C. C. and Kuo, Y., J. Solid State Sci. and Technol. vol. 2, Q16, 2013.CrossRefGoogle Scholar