Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:02:18.947Z Has data issue: false hasContentIssue false

Non-Planar Solid Phase Epitaxial Growth Processes in Ion-Implanted GaAs

Published online by Cambridge University Press:  15 February 2011

J. S. Williams
Affiliation:
Faculty of Engineering, Royal Melbourne Institute of Technology, Melbourne 3000 (Australia)
F. M. Adams
Affiliation:
Faculty of Engineering, Royal Melbourne Institute of Technology, Melbourne 3000 (Australia)
K. G. Rossiter
Affiliation:
Faculty of Engineering, Royal Melbourne Institute of Technology, Melbourne 3000 (Australia)
Get access

Extract

High resolution ion channelling and reflection electron diffraction techniques have been used to examine details of epitaxial regrowth in Ar+-ion-implanted GaAs(100) at furnace anneal temperatures of 400°C or less. In particular, we have investigated the nature and extent of epitaxial regrowth during both isothermal and isochronal annealing for various implant energies and for implant doses above and below the amorphous threshold. Our results indicate the development of a nonplanar growth interface during annealing which may lead, ultimately, to complex near-surface crystallization processes. Consistently with our observations and recent results from other laboratories, we propose a model for the epitaxial regrowth of amorphous GaAs layers based upon non-uniform growth rates along the amorphous-crystalline interface which could arise from local stoichiometry imbalance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gamo, K., Inada, T., Mayer, J. W., Eisen, F. H. and Rhodes, C. G., Radiat. Eff, 33 (1977) 85.Google Scholar
2 Kular, S.S., Sealy, B. J., Stephens, K. G., Sadana, D. and Booker, G. R., Solid-State Electron., 23 (1980) 831.Google Scholar
3 Williams, J. S. and Harrison, H. B., in Anderson, G. L., Celler, G. K. and Rozgonyi, G. A. (eds.), Laser and Electron-beam Solid Interactions and Materials Processing, Electrochemical Society, Princeton, NJ, 1981, p. 209.Google Scholar
4 Csepregi, L., Mayer, J. W. and Sigmon, T. W., Phys. Lett. A, 54 (1975) 157.Google Scholar
5 Williams, J. S. and Austin, M. W., Appl. Phys. Lett., 36 (1980) 994.Google Scholar
6 Williams, J. S., Austin, M. W. and Harrison, H. B., in Baglin, J. E. E. and Poate, J. M. (eds.), Thin Film Interfaces and Interactions, Electrochemical Society, Princeton, NJ, 1981, p. 187.Google Scholar
7 Grimaldi, M. G., Paine, B. M., Mäenpää, M., Nicolet, M.-A. and Sadana, D. K., Appl. Phys. Lett., 39 (1981) 70.Google Scholar
8 Grimaldi, M. G., Paine, B. M., Nicolet, M.-A. and Sadana, D. K., J. Appl. Phys., 52 (1981) 4038.Google Scholar
9 Nissim, Y. I., Christel, L. A., Sigmon, T. W., Gibbons, J. F., Magee, T. J. and Ormond, R., J. Appl. Phys., to be published.Google Scholar