Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T00:50:38.706Z Has data issue: false hasContentIssue false

Nonlinear Optical Films by Alternating Polyelectrolyte Deposition on Hydrophobic and Hydrophilic Substrates

Published online by Cambridge University Press:  10 February 2011

M. Joseph Roberts*
Affiliation:
United States Department of the Navy, Naval Air Warfare Center Weapons Division, Materials and Chemistry Division, Code 4T4220D, 1 Administration Circle, China Lake, CA 93555
Get access

Abstract

The formation of acentric films using alternating polyelectrolyte deposition (APD) has been achieved on hydrophobic and hydrophilic glass substrates. APD is a layer-by-layer technique for the formation of polymer films by alternately immersing a substrate in aqueous solutions of a polyanion and a polycation. APD provides precise control of the overall film thickness that through automated processing may exceed a thousand layers. In this study, APD films were made of an NLO-active polycation, stilbazolium-substituted polyepichlorohydrin (SPECH), and NLO-inactive polyanions. The peak maximum UV-Visible absorbance in transmission through the films was linear as a function of the number of bilayers. Second harmonic generation (SHG) was used as a tool to indicate acentric order of polarizable sidechain chromophores within the APD films. The SHG exhibited the expected quadratic intensity increase with film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Decher, G., Lvov, Y., Schmitt, J., Thin Solid Films 244, 772 (1994).Google Scholar
2) Sayre, C. N., Collard, D. M., Journal of Materials Chemistry 7(6), 909 (1997).Google Scholar
3) Ferreira, J. H., Cheung, M., Rubner, M., Thin Solid Films 244, 806 (1994).Google Scholar
4) Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., Thin Solid Films 284–285, 797 (1996).Google Scholar
5) Schmitt, J., Decher, G., Dressick, W. J., Brandow, S. L., Geer, R. E., Shashidar, R., Calvert, J. M., Advanced Materials 9(1), 61 (1997).Google Scholar
6) Lvov, Y., Yamada, S., Kunitake, T., Thin Solid Films 300, 107 (1997).Google Scholar
7) Wang, X., Balasubramanian, S., Li, L., Jiang, X., Sandman, D. J., Rubner, M. F., Kumar, J., Tripathy, S. K., Macromol. Rapid Commun. 18, 451 (1997).Google Scholar
8) Delcorte, A., Bertrand, P., Wischerhoff, E., Laschewsky, A., Langmuir 13, 5125 (1997).Google Scholar
9) Roberts, M. J., Stenger-Smith, J. D., Zarras, P., Lindsay, G. A., Hollins, R. A., Chafin, A. P., Yee, R. Y., Wynne, K. J., Proceedings of the SPIE 3281, 126 (1998).Google Scholar
10) Heflin, J. R., Liu, Y., Figura, C., Marciu, D., Claus, R. O., Technical Digest of the OSA/ACS Conference on Organic Thin Films for Photonics Applications, 78 (1997).Google Scholar
11) Lenahan, K. M., Wang, Y., Liu, Y., Claus, R. O., Heflin, J. R., Marciu, D., Figura, C., Advanced Materials 10(11), 853, (1998).Google Scholar
12) Lindsay, G. A., Roberts, M. J., Stenger-Smith, J. D., Zarras, P., Hollins, R. A., Chafin, A. P., Yee, R. Y., Wynne, K. J., Proceedings of the SPIE 3474, 63 (1998).Google Scholar
13) Roberts, M. J.; Herman, W. N.; Lindsay, G. A.; Wynne, K. J., Journal of the American Chemical Society 120, 11202 (1998).Google Scholar
14) Lindsay, G. A., Roberts, M. J., Stenger-Smith, J. D., Zarras, P., Hollins, R. A., Chafin, A. P., Yee, R. Y., Wynne, K. J., Journal of Materials Chemistry, in press.Google Scholar
15) Tanahatoe, J.J., Kuil, M. E., Macromolecules 30, 6102 (1997).Google Scholar
16) Tsukruk, V. V., Bliznyuk, V. N., Visser, D., Campbell, A. L., Bunning, T. J., Adams, W. W., Macromolecules 30, 6615.Google Scholar
17) Shiratori, S. S., Rubner, M. F., Technical Report of the Institute of Electronics, Information, and Communications Engineers OME98-106, 32, (1998).Google Scholar