Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:57:36.261Z Has data issue: false hasContentIssue false

Nonlinear Dielectric and Piezoelectric Responses in (Bi, La)FeO3-Pb(Ti, Mn)O3 Ceramics

Published online by Cambridge University Press:  30 March 2012

Guiyang Shi
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072
Shundong Bu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072
Rui Dai
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072
Shengwen Yu
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072
Jinrong Cheng
Affiliation:
School of Materials Science and Engineering, Shanghai University, Shanghai, 200072
Get access

Abstract

Polycrystalline solutions of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3(BLF-PTM, x=0 and 0.01)have been fabricated by the so-gel process combined with a solid state reaction method. BLF-PTM exhibits the nonlinear dielectric and piezoelectric responses under applied fields. Rayleigh law has been used to evaluate the irreversible contribution of the domain walls movement to the nonlinear dielectric response. Rayleigh analysis reveals that a mechanism with no associated loss exists in the BLF-PTM of x=0.01. The real part piezoelectric coefficient of BLF-PTM linearly increases with increasing the electric fields. The dielectric and piezoelectric nonlinear coefficient of 0.17×10-3 m/V and 0.897 ×10-17 m2/V2 respectively are obtained for BLF-PTM of x=0.01,which are smaller than those of 0.22×10-3 m/V and 1.19 ×10-17 m2/V2 for BLF-PTM of x=0. Our results indicate that Mn doping increase the intrinsic piezoelectric properties of BLF-PTM reducing the extrinsic contributions to piezoelectric responses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Eitel, R. E., Shrout, T. R. and Randall, C. A., J. Appl. Phys., 99, 124110 (2006).Google Scholar
2. Albareda, A., Gonnard, P., Perrin, V., Briot, R. and Guyomar, D., IEEE Trans. Ulltra. Ferro. Freq. Contr. 47. (2000) 4.Google Scholar
3. Rerrin, V., Troccaz, M. and Gonnard, P., J. Electroceram., 4:1 (2000) 189194.Google Scholar
4. Gonnard, P., Petit, L., Bol. Soc. Esp. Ceram. Vidrio., 41[1], (2002) 107.Google Scholar
5. Priya, S., Viehland, D., Ryu, J., Uchino, K., Yamashita, Y. and Luo, H., Jpn. J. Appl. Phys., 40 (2001) 6487.Google Scholar
6. Demartin, D. and Damjanovic, M., J. Phys. D: Appl. Phys., 29 (1996) 2057.Google Scholar
7. Hall, D. A., J. Mater. Sci., 36 (20010) 4575.Google Scholar
8. Bernal, A. and Bassiri-Gharb, N., Appl. Phys. Lett. 95, 042902 (2009).Google Scholar
9. Hall, D. A. and Stevevson, JP. J., Ferroelectric, 228 (1999) 139.Google Scholar
10. Cheng, J., Meng, Z. and Cross, L. E., J. Appl. Phys., 98, 084102 (2005).Google Scholar
11. cheng, J., Eitel, R., and Cross, L. E., J. Am. Ceram. Soc., 86 (2003) 211121115.Google Scholar
12. Kounga Njiwa, A. B., Aulbach, E.. Rödel, J., Turner, S. L., Comya, T. P. andBell, A. J., J. Am. Ceram. Soc., 89 (2006) 1761.Google Scholar
13. Leist, T., Webber, K. G., Jo, W., Aulbach, E., Rödel, J., Prewitt, AD, Jones, J. L., Schmidlin, J., and Hubbard, C. R., Acta Mater., 58 (2010) 5962.Google Scholar
14. Leist, T., Webber, K. G., Jo, W., Aulbach, E., Jones, J. L. and Rödel, J., J. Appl. Phys., 109, 054109 (2011).Google Scholar
15. Shi, G., Chen, J., Zhou, L., Yu, S., Cheng, J., Hong, L., Li, G., Curr. Appl. Phys., (2011), doi:10.1016/j.cap.2011.03.019.Google Scholar
16. García, J. E., Pérez, R., Ochoa, D. A., Albareda, A., Lente, M. H. and Eiras, J. A., J. Appl. Phys. 103, 054108 (2008).Google Scholar
17. Arlt, G., Ferroelectrics, 189 (1996) 91101.Google Scholar
18. Chen, Y. H., and Uchino, K., J. Appl. Phys., 89 (2001) 39283933.Google Scholar
19. Tan, , Li, J. F., and Viehland, D., Philo. Maga. Part B, 76:1 (1997) 5974.Google Scholar
20. Damjanovic, D. and Demartin, M., Appl. Phys. Lett., 68 (1996) 3046.Google Scholar
21. Kungl, H., Fett, T., Wagner, S. and Hoffmann, M. J., J. Appl. Phys., 101, 044101 (2007).Google Scholar