Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:15:38.606Z Has data issue: false hasContentIssue false

Non-equilibrium processes in martensitic phase transformations by X-ray photon correlation spectroscopy

Published online by Cambridge University Press:  22 June 2015

Michael Widera
Affiliation:
2nd Institute of Physics and JARA-FIT, RWTH Aachen University, D-52056 Aachen, Germany.
Uwe Klemradt
Affiliation:
2nd Institute of Physics and JARA-FIT, RWTH Aachen University, D-52056 Aachen, Germany.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Through undulator sources at 3rd generation synchrotrons, highly coherent X-rays with sufficient flux are nowadays routinely available, which allow carrying over photon correlation spectroscopy (PCS) from visible light to the X-ray regime. X-ray photon correlation spectroscopy (XPCS) is based on the auto-correlation of X-ray speckle patterns during the temporal evolution of a material and provides access both to equilibrium and non-equilibrium properties of materials at the Angstrom scale. Owing to technical limitations (detector readout), XPCS has typically been used for the detection of slow dynamics on the scale of seconds. The variety of scattering geometries employed in conventional X-ray analysis can be combined with XPCS. In this work, we report on bulk diffraction (XRD) used to study the prototypical shape memory alloy Ni63Al37 undergoing a structural, diffusionless (martensitic) transformation. Two-time correlation functions reveal non-equilibrium dynamics superimposed with microstructural avalanches.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

References

REFERENCES

Nishiyama, Z., Martensitic Transformation (Acad. Press New York, 1978).Google Scholar
Davenport, T., Zhou, L. and Trivisonno, J.. Phys. Rev. B 59, 3421 (1999).CrossRefGoogle Scholar
Shapiro, S.M., Larese, J.Z., Noda, Y., Moss, S.C. and Tanner, L.E.. Phys. Rev. Lett. 57, 3199 (1986).CrossRefGoogle Scholar
Manosa, L., Planes, A., Zarestky, J., Lograsso, T., Schlagel, D.L. and Stassis, C.. Phys. Rev B 64, 024305 (2001).CrossRefGoogle Scholar
Ohba, T., Raymond, S., Shapiro, S.M. and Otsuka, K.. Appl. Phys. 37, 64 (1998).Google Scholar
Rusovic, N. and Warlimont, H.. Phys. Stat. Sol A 44, 609 (1977).7CrossRefGoogle Scholar
Cohen, M., Olson, G.B. and Clapp, P.C.. Proc. of the International Conference on Martensitic Transformations ICOMAT-79, Ed. Owen, W.S. (MIT, Cambridge, 1979).Google Scholar
Nakajima, K., Aoki, S., Otsuka, K. and Ohba, T.. Mat. Lett. 21, 271 (1994).CrossRefGoogle Scholar
Ren, X. and Otsuka, K.. Nature 389, 579 (1997).CrossRefGoogle Scholar
Madsen, A., Leheny, R.L., Guo, H., Sprung, M. and Czakkel, O.. New J. of Phys. 12, 055001 (2010).CrossRefGoogle Scholar
Grübel, G., Madsen, A. and Robert, A.. Soft Matter Characterization, chapter 13. Springer Science+Business Media, LCC, New York (2008).Google Scholar
Shpyrko, O.G., Isaacs, E.D., Logan, J.M., Feng, Yenjun, Aeppli, G., Jaramillo, R., Kim, H.C., Rosenbaum, T.F., Zschack, P., Sprung, M., Narayanan, S. and Sandy, A.R.. Nature 447, 68 (2007).CrossRefGoogle Scholar
Malik, A., Sandy, A.R., Stephenso, G.B., Mochrie, S.G.J., McNulty, I. and Sutton, M.. Phys. Rev. Lett. 81, 5832 (1998).CrossRefGoogle Scholar
Vives, E., Ortin, J., Manosa, L., Rafols, I., Perez-Magrane, R., and Planes, A., Phys. Rev. Lett. 72, 1694 (1994).CrossRefGoogle Scholar
Krivoglaz, M. A., Theory of X-ray and Neutron Scattering by Real Crystals (New York: Plenum Press, 1969).Google Scholar
Robertson, I.M., Phil. Mag. A 64, 577 (1991).CrossRefGoogle Scholar
Müller, L., Waldorf, M., Gutt, C., Grübel, G., Madsen, A., Finlayson, T.R., and Klemradt, U., Phys. Rev. Lett. 107, 105701 (2011).CrossRefGoogle Scholar
Sanborn, C., Ludwig, K.F., Rogers, M.C. and Sutton, M.. Phys. Rev. Lett. 107, 015702 (2011).CrossRefGoogle Scholar
Otsuka, K. and Ren, X.. Mat. Sci. Eng A 312, 207 (2001).CrossRefGoogle Scholar