Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:24:19.007Z Has data issue: false hasContentIssue false

Nonequilibrium Interface Kinetics During Rapid Solidification

Published online by Cambridge University Press:  28 February 2011

Michael J. Aziz*
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Get access

Abstract

The deviations from local equilibrium at a rapidly moving solid-liquid interface are well documented. The fraction of solute atoms in the liquid at the interface that joins the crystal during rapid solidification approaches unity and the interface temperature drops. Experimental and theoretical work on impurity incorporation and interfacial undercooling is reviewed. Past and future experiments to test the theories are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baker, J.C. and Cahn, J.W., Acta Metall. 17, 575 (1969).Google Scholar
2. White, C.W., Wilson, S.R., Appleton, B.R. and Young, F.W. Jr, J. Appl. Phys. 51, 738 (1980).Google Scholar
3. Baeri, P., Poate, J.M., Campisano, S.U., Foti, G., Rimini, E., and Cullis, A.G., Appl. Phys. Letters 37, 912 (1980).Google Scholar
4. Baker, J.C. and Cahn, J.W., in Solidification (ASM, Metals Park, Ohio, 1970), pp. 2358.Google Scholar
5. Hall, R.N., J. Physical Chem. 57, 836 (1953).Google Scholar
6. Chernov, A.A., in Growth of Crystals, edited by Shubnikov, A.V. and Sheftal', N.N. (Consultants Bureau, New York, 1962), Vol.3, p. 35.Google Scholar
7. Brice, J.C., The Growth of Crystals from the Melt (North-Holland, Amsterdam, 1965).Google Scholar
8. Cahn, J.W., Coriell, S.R. and Boettinger, W.J., in Laser and Electron Beam Processing of Materials, edited by White, C.W. and Peercy, P.S. (Academic Press, New York, 1980), p. 89.Google Scholar
9. Hillert, M. and Sundman, B., Acta Metall. 25, 11 (1977).Google Scholar
10. Jackson, K.A., in Surface Modification and Alloying by Laser. Ion and Electron Beams, edited by Poate, J.M., Foti, G. and Jacobson, D.C. (Plenum Press, New York, 1983), p. 51.Google Scholar
11. Aziz, M.J., J. Appl. Phys. 53, 1158 (1982).Google Scholar
12. Aziz, M.J., Appl. Phys. Lett. 43, 552 (1983).Google Scholar
13. Gilmer, G.H., Mat. Res. Soc. Symp. Proc. 13, 249 (1983).Google Scholar
14. Turnbull, D., J. Physical Chem. 66, 609 (1962).Google Scholar
15. Turnbull, D., Contemporary Physics 10, 473 (1969).CrossRefGoogle Scholar
16. Turnbull, D., in ref. 4, pp. 1–22.Google Scholar
17. Turnbull, D., J. de Physique, 35, C4.1 (1974).Google Scholar
18. Turnbull, D. and Bagley, B.G., in Treatise on Solid State Chemistry, edited by by Hannay, N.B. (Plenum Press, New York, 1975), Vol.5, pp. 513–54.Google Scholar
19. Spaepen, F. and Turnbull, D., in Rapidly Ouenched Metals. 2nd International Conference, edited by Grant, N.J. and Giessen, B.C. (MIT Press, Cambridge, Mass., 1976), pp. 205–29.Google Scholar
20. Spaepen, F. and Turnbull, D., in Laser Annealing of Semiconductors, edited by Poate, J.M. and Mayer, J.W. (Academic Press, New York, 1982), pp. 1542.Google Scholar
21. Turnbull, D., Metall. Trans. A 12, 693 (1981).Google Scholar
22. Coriell, S.R. and Turnbull, D., Acta Metall. 30, 2135 (1982).Google Scholar
23. Broughton, J.Q., Gilmer, G.H., and Jackson, K.A., Phys. Rev. Lett. 49, 1496 (1982).CrossRefGoogle Scholar
24. MacDonald, C.A., Malvezzi, A.M. and Spaepen, F., Mat. Res. Soc. Symp. Proc., edited by Kurz, H., Olson, G.L., and Poate, J.M., 51, 277–282 (1986).Google Scholar
25. Goldman, L.M. and Aziz, M.J., submitted to J. Mater. Res.Google Scholar
26. Aziz, M.J. and Kaplan, T., submitted to Acta Metall.Google Scholar
27. White, C.W., Appleton, B.R., Stritzker, B., Zehner, D.M. and Wilson, S.R., Mat. Res. Soc. Symp. Proc. 1, 59 (1981).Google Scholar
28. Baeri, P., Foti, G., Poate, J.M., Campisano, S.U. and Cullis, A.G., Appl. Phys. Lett. 38, 800 (1981).Google Scholar
29. Poate, J.M., Mat. Res. Soc. Symp. Proc. 4, 121 (1982).Google Scholar
30. White, C.W., Zehner, D.M., Campisano, S.U. and Cullis, A.G., in ref. 10, p. 94.Google Scholar
31. Aziz, M.J., Ph.D. thesis, Harvard University (1983), pp. 76–82.Google Scholar
32. Aziz, M.J., Tsao, J.Y., Thompson, M.O., Peercy, P.S. and White, C.W., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
33. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S. and Hammond, R.B., Appl. Phys. Lett. 42, 445 (1983).Google Scholar
34. Aziz, M.J., Tsao, J.Y., Thompson, M.O., Peercy, P.S., and White, C.W., Mat. Res. Soc. Symp. Proc. 35, 153 (1985).Google Scholar
35. Papa, T., Scudieri, F., Marinelli, M., Zammit, U., and Cembali, G., J. de Physique, C-5.73 (1983).Google Scholar
36. Aziz, M.J. and White, C.W., Phys. Rev. Lett. 57, 2675 (1986).CrossRefGoogle Scholar
37. Onsager, L., Phys. Rev. 37, 405 (1931); 38, 2265 (1931).Google Scholar
38. Christian, J.W., in Theory of Transformations in Metals and Alloys, Part I, 2nd ed. (Pergamon, Oxford, 1975), p. 479.Google Scholar
39. Boettinger, W.J., Coriell, S.R. and Sekerka, R.F., Mat. Sci. and Eng. 65, 27 (1984).Google Scholar
40. Cahn, J.W., Acta Metall. 10, 789 (1962).Google Scholar
41. Murray, J.L., Metall. Trans. A 15, 261 (1984).Google Scholar
42. Boettinger, W.J., Shechtman, D., Schaefer, R.J., Biancaniello, F., Metall. Trans. A 15, 55 (1984).CrossRefGoogle Scholar
43. Duwez, P., Willens, R.H., and Klement, W., J. Appl. Phys. 31, 1136 (1960).Google Scholar
44. Aziz, M.J., in Hume-Rothery Symposium on Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C.C., TMS-AIME Symp. Proc. (1986).Google Scholar
45. Galvin, G.J., Mayer, J.W. and Peercy, P.S., Mat. Res. Soc. Symp. Proc. 23, 111 (1984).Google Scholar
46. Peercy, P.S. and Thompson, M.O., Mat. Res. Soci. Symp. Proc. 35, 53 (1985).Google Scholar
47. Tsao, J.Y., Picraux, S.T., Peercy, P.S., and Thompson, M.O., Appl. Phys. Lett. 48, 278 (1986).Google Scholar