Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T10:26:56.885Z Has data issue: false hasContentIssue false

Nondestructive Measurement of Interphase Processes Using Impedance Spectroscopy

Published online by Cambridge University Press:  25 February 2011

Richard Frankovic
Affiliation:
Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago, IL 60616
Philip R. Troyk
Affiliation:
Pritzker Institute of Medical Engineering, Illinois Institute of Technology, Chicago, IL 60616
James E. Anderson
Affiliation:
Research Staff, Ford Motor Company, Dearborn, MI 48121
Get access

Abstract

Impedance spectroscopy (IS) was used as a nondestructive technique to measure the interphase processes of encapsulated microelectronic substrates exposed to high relative humidity. The advantages of IS include: sensitivity of IS to chemical kinetics, ability of in-situ testing of encapsulated packages and non-destructive nature.

Samples undergoing contamination under high relative humidity, produce frequency responses resembling those found for electrochemical cells. This suggests that the presence of hygroscopic residues induce surface water uptake resulting in the formation of surface electrochemical cells and decreased interphase impedance.

Samples undergoing a process of “supercleaning” using argon plasma and exposed to high relative humidity, produce frequency responses that more closely approach responses characteristic of dry samples than do conventionally cleaned or contaminated samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. lannuzzi, M., IEEE Trans. Comp. Hybr. Manu. Tech., CHMT–6, 191, (1983).Google Scholar
2. Iannuzzi, M., IEEE Trans. Comp. Hybrd. Manu. Tech., CHMT–6, 181, (1983).Google Scholar
3. Sim, S.P. and Lawson, R.W., 17th Ann. Rel. Phys. Symp., 103 (1979).Google Scholar
4. Flood, J.L., 10th Ann. Rel. Phys. Symp. 95 (1972).Google Scholar
5. Olberg, R.C. and Bozarth, J.L., Microeiectronics and Rel., 15, 601, (1976).Google Scholar
6. Stroehle, D., IEEE Trans. Comp. Hybrd. Manu. Tech., CHMT–6, 537, (1983).Google Scholar
7. Peterson, P.W., IEEE Tran. Comp. Hybrd. Manu. Tech., CHMT–2, 422, (1979).Google Scholar
8. Sbar, N.L. and Kozakiewicz, R.P., IEEE Trans. Electron Dev., ED–26, 56, (1979).Google Scholar
9. Koelmans, H. and Kretschman, H.J., J. Electrochem. Soc., 1715 (1978).Google Scholar
10. Bevington, J.R., Cook, J.P. and Little, D.R., Proc. 8th Ann. Rel. Phys. Symp., 73 (1970).Google Scholar
11. Brauer, J.B., Kapfer, V.C. and Tamburrino, A.L., Proc. 8th Ann. Rel. Phys. Symp., 61 (1970).Google Scholar
12. Reich, Bernard and Hakim, E.B., Proc. 10th Ann. Rel. Phys. Symp., 82 (1972).Google Scholar
13. Murphy, E.J. and Morgan, S.O., Bell Sys. Tech. Jour., 18, 502, (1939).Google Scholar
14. Iannuzzi, M., Proc. Electronics Comp. Conf., 228 (1981).Google Scholar
15. MacDonald, J.R., Johnson, William B., Raistrick, Ian D., and Franceschetti, Donald R. in Impedance Spectroscopy: Emphasizing Solid Materials and Systems, edited by MacDonald, J.R. (Wiley, New York, 1987) Ch. 1&2.Google Scholar
16. Gabrielli, C., Identification of Electrochemical Processes by Freauency Response Analysis. Tech. Rep. No. 004/83, Solartron Instruments, Issue 2, 1984.Google Scholar
17. Reinhard, G. Rammelt, U. and Rammelt, K., Corrosion Science, 2 109 (1966).Google Scholar
18. Rammelt, U. and Reinhard, G., J. Electoan. Chem., 180, 327, (1984).Google Scholar
19. Scantlebury, J.D., Ho, K.N. and Eden, D.A., Electrochemical Corrosion Testing, ASTM STP 727, Mansfeld, F. and Bertocci, U. Eds., Amer. Soc. for Testing and Materials, 187 (1981).Google Scholar
20. Mansfield, F., Kendig, M.W. and Tsai, S., Corrosion (NACE), 38, 478, (1982).Google Scholar
21. Kendig, M.W. and Leidheiser, H. Jr., J. Electrochem. Soc., 23, 982, (1976).Google Scholar
22. Leidheiser, H. Jr., Corrosion (NACE), 39, 189, (1983).Google Scholar
23. Zaretsky, M.C., Mouayad, L. and Melcher, J.R., IEEE Tran. Elec. Insul., EI–23, 897 (1988).Google Scholar
24. Garveric, S.L. and Senturia, S.D., IEEE Trans. Elec. Dev., ED–2, 90, (1982).Google Scholar
25. Hoffmann, D.A., Anderson, J.E., Bousse, L.J. and Frank, C.W., Proc. ACS Div. Poly. Mat., 59, 632 (1988).Google Scholar
26. Takahashi, K.M., Mat. Res. Soc. Symp. Proc., 154, 259, (1989).Google Scholar
27. Anderson, J.E. Adams, K.M. and Troyk, P.R., Accepted for pub. in Special Issue of J. Non-Crystal. Solids, (1991).Google Scholar
28. Curtis, H.L., US Bureau of Standards Scientific Papers, 234, (1915).Google Scholar
29. Anderson, J.E., Adams, K.M., Troyk, P.R. and Frankovic, R., Accepted for Pub. IEEE Trans. Comp. Hybrd. Manu. Tech., (1990).Google Scholar
30. Troyk, P.R., Conroy, D. and Anderson, J.E., in Polymeric Materials for Electronic Packaging and Interconnection, edited by Lupinski, J.H. and Moore, R.S., American Chem. Soc., Washington, DC,1989), p.249.Google Scholar
31. Anderson, J.E., Markovac, V. and Troyk, P.R., IEEE Tran. Comp. Hybrd. Manu. Tech., CHMT–11, 152, (1988).Google Scholar
32. Troyk, P.R., Frankovic, R. and Anderson, J.E., Accepted for pub. IEEE Trans. Comp. Hybrd. Manu. Tech. (1990).Google Scholar
33. Cole, K.S. and Cole, R.H., J. Chem. Phys., 9, 341 (1941).Google Scholar
34. Cole, R.H., J. Chem. Phys., 23, 493, (1955).Google Scholar
35. MacDonald, J.R. J. Chem. Phys., 20, 1107, (1952).Google Scholar
36. Kirkwood, J.G. and Fuoss, R.M., J. Chem. Phys., 9, 329, (1941).Google Scholar
37. Randles, J.E.B., Trans. Faraday Soc., 48 937 (1952).Google Scholar
38. Sluyters, J.H., Rec. Trav. Chim., 79, 1092 (1960).Google Scholar
39. Brug, G.J., Eeden, A.L.G. Van Den, Sluyters-Rehbach, M. and Sluyters, J.H. J. Electroan. Chem., 176, 275, (1984).Google Scholar
40. DeLevie, R., Efectrochim. Acta, 10, 113, (1965).Google Scholar
41. Holub, K., Tessari, G. and DeTahay, P., J. Phys. Chem., 71, 2612 ( 1967 ).Google Scholar
42. Delahay, P. and Susbielles, G.G., J. Phys. Chem., 70, 3150, (1966).Google Scholar
43. Grahme, D.C., J. Electrochem. Soc., 95, 370C (1952).Google Scholar
44. Epelboin, I. and Wiart, R., J. Electrochem. Soc., 118, 1577, (1971).Google Scholar
45. Epelboin, I. and Keddam, M., J. Electrochem Soc., 117, 1052, (1970).Google Scholar
46. Jonscher, A.K., J. Chem. Soc. Faraday Trans. 2, 82, 75, (1986).Google Scholar
47. Jonscher, A.K., Chaudhry, M.A. and Goel, T.C., IEEE Trans. Elec. Insul., E123, 397, (1988).Google Scholar