Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T19:24:13.075Z Has data issue: false hasContentIssue false

Non-Destructive Characterisation of Rapid Thermally Annealed N+-Doped Polysilicon Using Spectroscopic Ellipsometry

Published online by Cambridge University Press:  15 February 2011

R. T. Carline
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs WR14 3PS, U.K.
W. Y. Leong
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs WR14 3PS, U.K.
A. G. Cullis
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs WR14 3PS, U.K.
M. R. Houlton
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs WR14 3PS, U.K.
D. A. Hope
Affiliation:
Defence Research Agency, St Andrews Road, Malvern, Worcs WR14 3PS, U.K.
Get access

Abstract

The use of spectroscopic ellipsometry (SE) to characterise the effects of rapid thermal annealing on Si implanted with phosphorous and phosphorous with fluorine are presented. Variations in the measured SE spectra with anneal temperature and presence/absence of fluorine are clearly observed. Spectra are successfully modelled using refractive indices which are graded with depth. Comparison with cross-sectional transmission-electron microscopy and secondary ion mass spectroscopy show that the results can be correlated with both the crystallinity and impurity distribution in the poly-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rerences

1. Williams, J. D. and Ashburn, P., J. Appl. Phys. 72, p. 3169 (1992).Google Scholar
2. Moiseiwitsch, N.E., Marsh, C., Ashburn, P., Booker, G.R., Appl. Phys. Lett. 66, p 1918 (1995).Google Scholar
3. Wolstenholme, G.R., Jorgensen, N., Ashburn, P. and Booker, G.R, J. Appl. Phys. 61, p 225 (1987).Google Scholar
4. Moiseiwitsch, N. E. and Ashburn, P., IEEE. Trans. Elect. Dev. 41 p 1249 (1994).Google Scholar
5. Wu, S.L., Lee, C.L., Lei, T.F., Chen, C.F., Ho, K..Z. and Ling, Y.C., IEEE. Elect. Dev. Lett. 15, p 120 (1994).Google Scholar
6. Chen, T.P., Lei, T.F., Chang, C.Y., Hsieh, W.T. and Chen, L.J., J. Electrochem. Soc. 142, p 2000 (1995).Google Scholar
7. Aspnes, D. E., Studna, A. A. and Kinsbron, E., Phys. Rev. B 29, p 768 (1984).Google Scholar
8. Fried, M., Lohner, T., Aarnink, W.A.M., Hanekamp, L.J. and van Sifhout, A., J. Appl. Phys. 71, p 2835 (1992).Google Scholar
9. Lohner, R., Tóth, Z., Fried, M., Kh´, N.Q., Yang, G-Q., Lu, L-C., Zou, S., Hanekamp, L.J., van Silfhout, A. and Gyulai, J., Phys. Rev. B 85 (Nuclear Instruments and Methods), p524 (1994).Google Scholar
10. Fried, M., Lohner, T., Aarnink, W. A. M., Hanekamp, L. J. and Sifhout, A. van, J. Appl. Phys. 71, p 5260 (1992).Google Scholar
11. Suzuki, T., and Adachi, S., Jpn. J. Appl. Phys. 32, p 4900 (1993).Google Scholar
12. Montaudon, P., Debroux, M. H., Ferrieu, F. and Vareille, A., Thin Solid Films 125, p 235 (1985).Google Scholar
13. Pickering, C., Sharma, S., Morpeth, A.G., Keen, J.M. and Hodge, A.M., ECS Proc. 4th Int. Syp. SOI technology and devices, 90–6, P 175 (1990).Google Scholar
14. Handbook of Optical Constants of Solids, Ed Palik, E.D., Academic Press, Orlando 1985.Google Scholar
15. Jellison, G.E. Jr. Chisholm, M.F. and Gorbatkin, S.M., Appl. Phys. Lett. 62, p 3348 (1993).Google Scholar
16. Bagley, B.G., Aspnes, D.E, Adams, A.C. and Alexander., F.B. Jr. Bull. Am. Phys. Soc.. 25, p 12 (1983).Google Scholar