Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:19:50.121Z Has data issue: false hasContentIssue false

Non-Destructive and Whole Wafer Characterization of III-V Infrared Epitaxial Materials Prepared by Turbo Disk Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

Z. C. Feng
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
M. Pelczynski
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
C. Beckham
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
P. Cooke
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
I. Ferguson
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
R. A. Stall
Affiliation:
EMCORE Corporation, 394 Elizabeth Avenue, Somerset, NJ 08873
Get access

Abstract

Multiple wafer growth of infrared III-V semiconductor materials of InSb and InGaAsP have been produced by metalorganic chemical vapor deposition technology employing a vertical reactor growth configuration with a high speed rotating disk. Three measurement techniques of sheet resistivity, Fourier transform infrared (FTIR) reflectance and photoluminescence have been used to characterize epitaxial films on wafers up to 4″ diameter. Mapping distributions of the film thickness, sheet resistivity, surface morphology, and PL peak wavelength with uniformities better than 1% are illustrated. Data from our 2900 runs are produced. Variations of the characteristic features of the film with the growth conditions are discussed. These whole wafer and non-destructive material characterization techniques tightly coupled with the epitaxial processes are necessary to realize the high quality and high uniformity growth of state-of-art materials in a production environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Manasreh, M. O., Myers, T. H. and Julien, F. H. ed., Infrared Applications of Semiconductors-Materials, Processing and Devices, Mat. Res. Soc. Symp. Proc. Vol.450, Materials Research Society (1997).Google Scholar
2. Razeghi, M. ed., Long Wavelength Infrared Detectors, in book series of Optoelectronic Properties of Semiconductors and Superlattices, Vol. 1, series ed. Mansreh, M. O., Gordon & Breach Press (1996).Google Scholar
3. Turner, G. W., Choi, H. K., Manfra, M. J. and Connors, M. K., in [1], p. 3.Google Scholar
4. Razeghi, M., Diaz, J., Yi, H.J., Wu, D., Lane, B., Rybaltowski, A., Xiao, Y., Jeon, H., in [1], p. 13.Google Scholar
5. Holmes, D. E. and Kamath, G. S., J. Electron. Mater. 9, 95 (1980).Google Scholar
6. McKee, M. A., Norris, P. E., Stall, R. A., Tompa, G. S., Chem, C. S., Noh, N., Kang, S. S. and Jasinski, T. J., J. Crystal Growth 107, 445 (1991).Google Scholar
7. McKee, M. A., Yoo, B.-S. and Stall, R. A., J. Crystal Growth 124, 286 (1992).Google Scholar
8. Thompson, A.G., Stall, R.A., Gurary, A.I. and Ferguson, I., Inst. Phys. Conf. Ser. No. 155, 881 (1996).Google Scholar
9. Feng, Z. C., Beckham, C., Schumaker, P., Ferguson, I., Stall, R. A., Schumaker, N., Povloski, M. and Whitley, A., in Infrared Applications of Semiconductors – Materials, Processing, and Devices, Mat. Res. Soc. Symp. Proc. Vol.450, ed. Julien, F., Myers, T. and Manasreh, M., MRS, Pittsburgh, pp. 6166 (1997).Google Scholar
10. Ferguson, I., Tran, C.A., Karlicek, R.F., Feng, Z.C., Stall, R.A., Laing, S., Cai, W., Li, Y., Liu, Y. and Lu, Y., in Photodetectors: Materials and Devices II, Proceedings of SPIE, Vol.2999, ed. Brown, G.J. & Razeghi, M., pp. 298305 (1997).Google Scholar
11. Woelk, E., Jurgensen, H., Rolph, R. and Zielinski, T., J. Electron. Mater. 24, 1715 (1995).Google Scholar
12. Yoo, B.-S., McKee, M. A., Kim, S.-G. and Lee, E.-H., Solid State Commun. 88, 447 (1993).Google Scholar
13. Li, K., Wee, A.T.S., Lin, J., Tan, K.L., Zhou, L., Li, S.F.Y., Feng, Z C., Chou, H.C., Kamra, S. & Rohatgi, A., J. Materials Science: Materials in Electronics 8, 125132 (1997).Google Scholar
14. Nelson, A.W., Spurdens, P.C., Cole, S., Walling, R.H., Wong, S., Harding, M.J., Cooper, D.M., Devlin, W.J. and Robertson, M. J., J. Crystal Growth 93, 792 (1988).Google Scholar
15. McKee, M.A., Yoo, B.-S. and Stall, R.A., Proc. 4th Intl. Conf. On InP and Related Materials, p.151 (1992).Google Scholar
16. Mori, K., Takemi, M., Takiguchi, T., Goto, K., Nishimura, T., Kimura, T., Mihashi, Y. and Murotani, T., Proc. 5th Intl. Conf. On InP and Related Materials, p.235 (1993).Google Scholar
17. Jordan, A.S., J. Electron. Mat. 24, 1649 (1995).Google Scholar
18. Lum, R.M., McDonald, M.L., Mack, E.M., Williams, M.D., Storz, F.G. and Levkoff, J., J. Electron. Mat. 24, 1577 (1995).Google Scholar