Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:33:45.157Z Has data issue: false hasContentIssue false

Nondestructive Analysis of Current Gain of InP/InGaAs Heterojunction Bipolar Transistor Structures using Photoreflectance Spectroscopy

Published online by Cambridge University Press:  10 February 2011

Hiroki Sugiyama
Affiliation:
NTT Photonics Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Noriyuki Watanabe
Affiliation:
NTT Photonics Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Kazuo Watanabe
Affiliation:
NTT Photonics Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Takashi Kobayashi
Affiliation:
NTT Photonics Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Kazumi Wada
Affiliation:
Department of Materials Science and Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA 02139
Get access

Abstract

InP/InGaAs heterojunction bipolar transistor (HBT) wafers grown by metal-organic vapor phase epitaxy (MOVPE) have been characterized by photoreflectance (PR) spectroscopy. The intensity of PR signals from the InP emitter and InGaAs collector layers of the HBT wafers decreased with increasing emitter growth temperature and showed a linear positive correlation with the HBT current gain. On the other hand, the intensity of PR signals from the n-InP single layers scarcely changed with increasing InP growth temperature. The change in the PR intensity of the emitter and collector layers is expected to reflect the crystal quality of the adjacent InGaAs:C base layer, which determines the HBT current gain. Thus, the present PR method is eminently suitable for the nondestructive analysis of the current gain of InP/InGaAs HBT wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kamitsuna, H., Matsuoka, Y., Yamahata, S. and Kurishima, K., Tech. Dig. GaAs IC Symp. (1995) p.185.Google Scholar
2. Eda, K. and Inada, M., J. Appl. Phy. 62, 4236(1987).Google Scholar
3. Watanabe, K. and Wada, K., J. Crystal Growth 103, 330(1990).Google Scholar
4. Nakanishi, H. and Wada, K., Jpn. J. Appl. Phys. 32, 6206(1993).Google Scholar
5. Nakanishi, H. and Wada, K., Mat. Res. Soc. Symp. Proc. 324, 161(1994).Google Scholar
6. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T., and Hafizi, M., Appl. Phys. Lett. 56, 1278(1990).Google Scholar
7. Yan, D., Pollak, F. H., Boccio, V. T., Lin, C. L., Kirchner, P. D., Woodall, J. M., Gee, Russell C. and Asbeck, P. M., Appl. Phys. Lett. 61, 2066(1992).Google Scholar
8. Hsu, K. T., Chen, Y. H., Chen, K. L., Chen, H. P., Lin, H. H. and Jan, G. J., Appl. Phys. Lett. 64, 1974(1994).Google Scholar
9. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. and Hafizi, M., Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1990), Vol. 1286, p. 404.Google Scholar
10. Watanabe, N., Kumar, S. A.K., Yamahata, S. and Kobayashi, T., J. Crystal Growth 195, 48(1998).Google Scholar
11. Sze, S. M., Physics of Semiconductors, 2nd ed. (John Wiely & Sons, New York, 1981), p. 142.Google Scholar
12. Wada, K., Fushimi, H., Watanabe, N., and Uematsu, M., presented at the Int. Conf. on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP 95), Inst. Phys. Conf. Ser., No.149, 31 (1996).Google Scholar
13. Höfler, G. E., Baillargeon, J. N., Hsieh, K. C., and Cheng, K. Y., Appl. Phys. Lett. 60, 1990(1992).Google Scholar
14. Höfler, G. E. and Hsieh, K. C., Appl. Phys. Lett. 61, 327(1992).Google Scholar