Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T16:47:21.019Z Has data issue: false hasContentIssue false

Non-Contact Characterization of Recombination Processes in 4H-SiC

Published online by Cambridge University Press:  15 March 2011

K. Matocha
Affiliation:
Center for Integrated Electronics and Electronics Manufacturing Rensselaer Polytechnic Institute, Troy, NY, USA
T.P. Chow
Affiliation:
Center for Integrated Electronics and Electronics Manufacturing Rensselaer Polytechnic Institute, Troy, NY, USA
R.J. Gutmann
Affiliation:
Center for Integrated Electronics and Electronics Manufacturing Rensselaer Polytechnic Institute, Troy, NY, USA
Get access

Abstract

Carrier decay transients in 4H-SiC n-type and p-type epilayers have been charac-terized using a non-destructive, non-contact microwave photoconductivity technique. Decay transients show a two-stage exponential decay with first decay constants as high as 400 ns in 10 νm p-type epilayers. The second decay constant increases with temperature and is dominated by interface recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kordina, O., Bergman, J. P., Hallin, C., and Janzéen, E., Appl. Phys. Letters 69, 679 (1996).Google Scholar
[2] Bergman, J. P., Kordina, O., and Janzén, E., Phys. stat. sol. (a) 162, 65 (1997).Google Scholar
[3] Galeckas, A., Grivickas, V., Linnros, J., Bleichner, H., and Hallin, C., J. Appl. Phys. 81, 3522 (1997).Google Scholar
[4] Galeckas, A., Linnros, J., Grivickas, V., Lindefelt, U., and Hallin, C., Mat. Science Forum 264–268, 533 (1998).Google Scholar
[5] Galeckas, A., Tornblad, O., Linnros, J., and Breitholtz, B., IEEE Electron Device Letters 20, 295 (1999).Google Scholar
[6] Galeckas, A., Linnros, J., Frischholz, M., Rottner, K., Nordell, N., Karlsson, S., and Grivickas, V., Mat. Sci. and Eng. (B) B61–62, 239 (1999).Google Scholar
[7] Kimoto, T., Miyamoto, N., and Matsunami, H., IEEE Trans. Electron Devices 46, 471 (1993).Google Scholar
[8] Neudeck, P. G., J. Elec. Mat. 27, 317 (1998).Google Scholar
[9] Ichimura, M., Tajiri, H., Morita, Y., Yamada, N., and Usami, A., Appl. Phys. Lett. 70, 1745 (1997).Google Scholar
[10] Sridhara, S. G., Eperjesi, T. J., Devaty, R. P., and Choyke, W. J., Mat. Sci. and Eng. (B) B61–62, 229 (1999).Google Scholar
[11] Saroop, S., Borrego, J. M., Gutmann, R. J., Charache, G. W., and Wang, C. A., J. Appl. Phys. 86, 1527 (1999).Google Scholar
[12] Ahrenkiel, R. K. and Lundstrom, M. S., Minority Carriers in III-V Semiconductors: Physics and Applications (Academic Press, New York, 1993).Google Scholar