Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:37:36.873Z Has data issue: false hasContentIssue false

Noncentrosymmetry in Mixed Metal Oxide-Fluorides, Can We Control It?

Published online by Cambridge University Press:  01 February 2011

Rachelle Ann F. Pinlac
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Michael R. Marvel
Affiliation:
[email protected], Aurora University, Chemistry, Aurora, Illinois, United States
Julien J.-M. Lesage
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Kenneth R. Poeppelmeier
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Get access

Abstract

The rational design of crystal structures, in particular noncentrosymmetric materials, and how to differentiate polar, polar-chiral, and chiral structures, is an ongoing theme in crystal engineering. In KNaNbOF5, the combination of a second-order Jahn Teller active d0 transition metal oxyfluoride anionic unit and mixed K/Na cation coordination environments are shown to result in a polar structure (space group Pna21). The crystal structure analysis of the Na/K-O/F interactions reveals that the potassium cations form one of the two contacts to the under-bonded oxide ions. These interactions satisfy the expected bond valence sums and Pauling's second crystal rule (PSCR), leading to O/F ordering and acentric packing of the [NbOF5]2− anionic unit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Halasyamani, P. S. and Poeppelmeier, K. R., Chem. Mat. 10 (10), 2753 (1998).Google Scholar
2. Schmid, H., J. Phys.: Condens. Matter 20, 434201 (2008).Google Scholar
3. Chang, H. Y., Sivakumar, T., Ok, K. M. and Halasyamani, P. S., Inorg. Chem. 47 (19), 8511 (2008).Google Scholar
4. Hubbard, D. J., Johnston, A. R., Casalongue, H. S., Sarjeant, A. N. and Norquist, A. J., Inorg. Chem. 47 (19), 8518 (2008).Google Scholar
5. Mao, J.-G., Jiang, H.-L. and Kong, F., Inorg. Chem. 47 (19), 8498 (2008).Google Scholar
6. Kunz, M. and Brown, I. D., J. Solid State Chem. 115 (2), 395 (1995).Google Scholar
7. Matthias, B. T. and Remeika, J. P., Physical Review 76, 1886 (1949).Google Scholar
8. Maggard, P. A., Kopf, A. L., Stern, C. L. and Poeppelmeier, K. R., CrystEngComm 6, 451 (2004).Google Scholar
9. Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 37 (1), 76 (1998).Google Scholar
10. Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 41 (20), 5119 (2002).Google Scholar
11. Bertolini, J. C., J. Emerg. Med. 10 (2), 163 (1992).Google Scholar
12. Peters, D. and Miethchen, R., Fluorine, J. Chem. 79 (2), 161 (1996).Google Scholar
13. Segal, E. B., Chem. Health Saf. 7 (1), 18 (2000).Google Scholar
14. Rabenau, A., Angew. Chem. Int. Ed. Engl. 24, 1026 (1985).Google Scholar
15. Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. and Poeppelmeier, K. R., Inorg. Chem. 35 (5), 1367 (1996).Google Scholar
16. Welk, M. E., Norquist, A. J., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 40 (22), 5479 (2001).Google Scholar
17. Harrison, W. T. A., Nenoff, T. M., Gier, T. E. and Stucky, G. D., Inorg. Chem. 32 (11), 2437 (1993).Google Scholar
18. Halasyamani, P., Willis, M. J., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 35 (5), 1367 (1996).Google Scholar
19. Halasyamani, P. S., Heier, K. R., Norquist, A. J., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 37 (2), 369 (1998).Google Scholar
20. Norquist, A. J., Heier, K. R., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 37 (25), 6495 (1998).Google Scholar
21. Kurtz, S. K. and Perry, T. T., J. Appl. Phys. 39 (8), 3798 (1968).Google Scholar
22. Brown, I. D., in The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 1st ed. (Oxford University Press, Oxford, 2002).Google Scholar
23. Brown, I. D. and Altermatt, D., Acta Crystallogr., Sect. B: Struct. Sci. B41 (4), 244 (1985).Google Scholar
24. Pauling, L., J. Am. Chem. Soc. 51, 1010 (1929).Google Scholar
25. Izumi, H. K., Kirsch, J. E., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 44 (3), 884 (2005).Google Scholar
26. Maggard, P. A., Stern, C. L. and Poeppelmeier, K. R., J. Am. Chem. Soc. 123 (31), 7742 (2001).Google Scholar
27. Heier, K. R., Norquist, A. J., Halasyamani, P. S., Duarte, A., Stern, C. L. and Poeppelmeier, K. R., Inorg. Chem. 38 (4), 762 (1999).Google Scholar
28. Vlasse, M., Moutou, J. M., Cervera-Marzal, M., Chaminade, J. P. and Hagenmuller, P., Rev. Chim. Maner. 19 (1), 58 (1982).Google Scholar
29. Maggard, P. A., Kopf, A. L., Stern, C. L., Poeppelmeier, K. R., Ok, K. M. and Halasyamani, P. S., Inorg. Chem. 41 (19), 4852 (2002).Google Scholar
30. Marvel, M. R., Lesage, J., Baek, J., Halasyamani, P. S., Stern, C. L. and Poeppelmeier, K. R., J. Am. Chem. Soc. 129 (45), 13963 (2007).Google Scholar
31. Brese, N. E. and O'Keeffe, M., Acta Crystallogr., Sect. B 47, 192 (1991).Google Scholar
32. Pearson, R. G., in Chemical Hardness. (John Wiley & Sons, Inc., New York, 1997).Google Scholar