Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:28:45.171Z Has data issue: false hasContentIssue false

Non-aqueous PEDOT:PSS dispersion for improved inverted organic solar cells

Published online by Cambridge University Press:  25 May 2015

Stefan Schumann
Affiliation:
Heraeus Deutschland GmbH & Co. KG, Business Line Display and Semiconductors (HNB) (Clevios), Chempark Leverkusen / Gebäude B 202, D-51368 Leverkusen, Germany
Andreas Elschner
Affiliation:
Heraeus Deutschland GmbH & Co. KG, Business Line Display and Semiconductors (HNB) (Clevios), Chempark Leverkusen / Gebäude B 202, D-51368 Leverkusen, Germany
Detlef Gaiser
Affiliation:
Heraeus Deutschland GmbH & Co. KG, Business Line Display and Semiconductors (HNB) (Clevios), Chempark Leverkusen / Gebäude B 202, D-51368 Leverkusen, Germany
Wilfried Lövenich
Affiliation:
Heraeus Deutschland GmbH & Co. KG, Business Line Display and Semiconductors (HNB) (Clevios), Chempark Leverkusen / Gebäude B 202, D-51368 Leverkusen, Germany
Get access

Abstract

A non-aqueous Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS) dispersion was developed to enable the accommodation of non-polar additives. This additional functionalisation targets selected interface characteristics and results in an improved adhesion of PEDOT:PSS on the photo-active layer. Such mechanical robustness is paramount in inverted organic photovoltaic cells contributing to improved long-term stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krebs, F. C., Espinosa, N., Hösel, M., Søndergaard, R. R. and Jørgensen, M., Adv. Mater. 26, 29 (2014)CrossRefGoogle Scholar
Larsen-Olsen, T. T., Machui, F., Lechene, B., Berny, S., Angmo, D., Søndergaard, R., Blouin, N., Mitchell, W., Tierney, S., Cull, T., Tiwana, P., Meyer, F., Carrasco-Orozco, M., Scheel, A., Lövenich, W., de Bettignies, R., Brabec, C. J. and Krebs, F. C., Adv. Ener. Mater. 9, 1091 (2012)CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., Krebs, F. C., Adv. Mater. 24, 580 (2012)CrossRefGoogle Scholar
Lloyd, M. T., Peters, C. H., Garcia, A., Kauvar, I. V., Berry, J. J., Reese, M. O., McGehee, M. D., Ginley, D. S., Olson, D. C. Sol. Ener. Mater. & Solar Cells 95, 1382 (2011)CrossRefGoogle Scholar
Dupont, S. R., Voroshazi, E., Heremans, P., Dauskardt, R. H., Org. Electr. 5, 1262 (2013).CrossRefGoogle Scholar
Friedrich, J., Guntermann, U., “Screen Printing Paste for Producing Electrically Conductive Coatings” WO 99/34371 (1999)Google Scholar
ASTM Standard D3359, 2002 (2008), „Standard Test Methods for Measuring Adhesion by Tape Test”, ASTM International, West Conshohocken, PA (2003) Google Scholar
Sekine, N., Chou, C.-H., Kwan, W. L., Yang, Y., Org. Electr. 10, 1473 (2009)CrossRefGoogle Scholar