Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:34:18.015Z Has data issue: false hasContentIssue false

Noise Sources in Polycrystalline Silicon Thin-Film Transistors

Published online by Cambridge University Press:  11 February 2011

Il Ki Han
Affiliation:
Nano Devices research center, Korea Institute of Science and technology, Seoul, 130650, Korea
Young Ju Park
Affiliation:
Nano Devices research center, Korea Institute of Science and technology, Seoul, 130650, Korea
Woon Jo Cho
Affiliation:
Nano Devices research center, Korea Institute of Science and technology, Seoul, 130650, Korea
Won Jun Choi
Affiliation:
Nano Devices research center, Korea Institute of Science and technology, Seoul, 130650, Korea
Jungil Lee
Affiliation:
Nano Devices research center, Korea Institute of Science and technology, Seoul, 130650, Korea
Alain Chovet
Affiliation:
IMEP, INPG/CNRS, Grenoble, 38016, France
Jean Brini
Affiliation:
IMEP, INPG/CNRS, Grenoble, 38016, France
Get access

Abstract

Sources for low frequency noise in polycrystalline silicon thin-film transistors are analytically investigated. The grain boundary is modeled as symmetric Schottky barrier and a new device equation for current conduction in thin-film transistors is presented. At lower currents where barrier height is large enough to provide necessary distribution of time constants for 1/f noise, the number fluctuation via barrier height modulation at the grain boundary is found to be the main noise generation mechanism. At higher currents, mobility and diffusivity fluctuation are found to be dominant

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pichon, L., Mercha, A., Carin, R., Mohammed-Brahim, T., Bonnaud, O., and Helen, Y., Solid-St. Electron., 46, 459466, 2002.Google Scholar
2. Lee, M.-C., Jeon, J.-H., Jung, S.H. and Han, M.-K., J. Korean Phys. Soc., 37(6), 870872, 2000 Google Scholar
3. Kimura, M., Inoue, S., and Shimoda, T., J. Appl. Phys., 91(6), 38553858, 2002.Google Scholar
4. Kimura, M., Inoue, S., Shimoda, T., and Eguchi, T., J. Appl. Phys., 89(1), 596600, 2001.Google Scholar
5. Luo, M.-Y. and Bosman, G., IEEE Trans. Electron Device, 37(3), 768774, 1990.Google Scholar
6. Michelutti, L., Phys. Rev. B, 57(19), 1236012363, 1998.Google Scholar
7. Dimitriadis, C. A., Brini, J., Kamarinos, G. and Ghibaudo, G., Jpn J. Appl. Phys., 37, Pt.1 (1), 7277, 1998.Google Scholar
8. Corradetti, A., Leoni, R., Carluccio, R., Fortunato, G., Reita, C., Pallis, F., and Pribat, D., Appl. Phys. Lett., 67(12), 17301731, 1995.Google Scholar
9. Angelis, C. T., Dimitriadis, C. A., Brini, J., Kamarinos, G., Gueorguiev, V. K., and Ivanov, Tz. E., IEEE Trans. Electron Device Tr. ED, 46(5), 968974, 1999.Google Scholar
10. Angelis, C. T., Dimitriadis, C. A., Farmakis, F. V., Brini, J., Kamarinos, G., Gueorguiev, V. K., and Ivanov, Tz.E., Appl. Phys. Lett., 76(1), 118120, 2000.Google Scholar
11. Chen, H.-L. and Wu, C.Y., IEEE Trans. Electron Device, 45(10), 22452247, 1998.Google Scholar
12. Lee, J. I., Han, I. K., Heo, D. C., Brini, J., Chovet, A., Dimitriadis, C. A. and Jeong, J. C., J. Korean Phys. Soc., 37(6), 966970, 2000.Google Scholar