Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T19:20:43.833Z Has data issue: false hasContentIssue false

Noble Gas Induced Defects in Silicon

Published online by Cambridge University Press:  10 February 2011

J. Weber
Affiliation:
Max-Planck-Institut für Festkirperforschung, Heisenbergstr. 1, 70569 Stuttgart, [email protected]
S.K. Estreicher
Affiliation:
Physics Department, Texas Tech University, Lubbock, TX 79409, USA
Get access

Abstract

Low energy bombardment of silicon with noble gas ions generates a family of defects with characteristic low-temperature photoluminescence spectra. The defect distribution up to one gtm below the sample surface indicates an unusually enhanced migration mechanism during the bombardment of the specimen. Annealing the samples above 500 °C leads to the disappearance of the photoluminescence spectra and the formation of new, more extended defects, which are excellent gettering sites for transition metals, in particular copper. Systematic calculations of noble-gas vacancy interactions imply a model for the photoluminescing defect where the noble gas atom is trapped by a divacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bean, J.C., Becker, G.E., Petroff, P.M., and Seidel, T.E., J. Appl. Phys. 48, 907 (1977).Google Scholar
[2] Sawyer, W.D., Weber, J., Nabert, G., Schmalzlin, J., and Habermeier, H.-U., J. Appl. Phys. 68, 6179 (1990).Google Scholar
[3] Ziegler, J.F., Biersack, J.P., and Littmark, U., in The Stopping and Range of Ions in Solids, edited by Ziegler, J.F. (Pergamon, New York, 1985).Google Scholar
[4] Davies, R.J., Habermeier, H.-U., and Weber, J., Appl. Phys. Lett. 47, 1295 (1985).Google Scholar
[5] Tkachev, V.D., Mudryi, A.V., and Minaev, N.S., Phys. Stat. Sol. (a) 81, 313 (1984).Google Scholar
[6] Bürger, N., Thonke, K., Sauer, R., and Pensl, G., Phys. Rev. Lett. 52, 1645 (1984).Google Scholar
[7] Davies, G., Phys. Rep. 176, 83 (1989).Google Scholar
[8] Bürger, N., Irion, E., Teschner, A., Thonke, K., and Sauer, R., Phys. Rev. B 35, 3804 (1987)Google Scholar
[9] Weber, J., Physica B 170, 201 (1991).Google Scholar
[10] Tkachev, V.D. and Mudryi, A.V., Inst. Phys. Conf. Ser. 31, 231 (1977).Google Scholar
[11] Singh, M., Weber, J., Zundel, T., Konuma, M. and Cerva, H., Mater. Sci. Forum, 38–41, 1033 (1989).Google Scholar
[12] Canham, L.T., Dyball, M.R., Leong, W.Y., Houlton, M.R., Cullis, A.G. and Smith, P.W., Mater. Science and Engineering, B 4, 41 (1989).Google Scholar
[13] Estreicher, S.K., Weber, J., Derecskei-Kovacs, A. and Marynick, D.S., Phys. Rev. B 55, 5037 (1997).Google Scholar
[14] Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).Google Scholar
[15] Davies, G., Lightowlers, E.C., and Ciechanowska, Z.E., J. Phys. C: 20, 191 (1987).Google Scholar
[16] Estreicher, S.K., Hastings, J.L., Fedders, P.A, Appl. Phys. Lett. 70, 432 (1997).Google Scholar
[17] Weber, J., Bauch, H., and Sauer, R., Phys. Rev. B 25, 7688 (1982).Google Scholar
[18] Corbett, J.W. in Electron Radiation Damage in Semiconductors and Metals (Academic, New York, 1966).Google Scholar
[19] Watkins, G.D. and Corbett, J.W., Phys. Rev. 138, A543 (1965).Google Scholar
[20] Hastings, J.L., Estreicher, S.K., and Fedders, P.A., Phys. Rev. B 56, 10215 (1997).Google Scholar
[21] Chadi, D.J. and Chang, K.J., Phys. Rev. B 38, 1523 (1988).Google Scholar
[22] Bongiorno, A., Colombo, L., and Diaz de la Rubia, T. (private communication).Google Scholar
[23] Cullis, A.G., Seidel, T.E. and Meek, R.L., J. Appl. Phys. 49, 5188 (1978).Google Scholar
[24] Templier, C., Boubeker, B., Garem, H., Mathé, E.L., and Desoyer, J.C., Phys. Stat. Sol. (a) 92, 511 (1985).Google Scholar
[25] Faraci, G., Pennisi, A.R., Terrasi, A., and Mobilio, S., Phys. Rev. B 38, 13468 (1988).Google Scholar
[26] Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996).Google Scholar