Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:54:24.377Z Has data issue: false hasContentIssue false

Nmr Imaging of Silica-Silicone Composites

Published online by Cambridge University Press:  21 February 2011

Leoncio Garrido
Affiliation:
NMR Center, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129
Jerome L. Ackerman
Affiliation:
NMR Center, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129
James E. Mark
Affiliation:
Department of Chemistry and the Polymer Research Center, University of Cincinnati, Cincinnati, OH 45221
Get access

Abstract

Polydimethylsiloxane (PDMS) model networks reinforced by in situ precipitated SiO2, and polymer-modified silica glasses were obtained following the usual sol-gel methods. The conditions were chosen to increase the probability of observing inhomogeneities: (i) bulky samples, and (ii) limited reaction times. These composites were characterized by measuring bulk spin-lattice (T1) and spin-spin (T2) relaxation times and using 1H NMR two-dimensional Fourier transform (2DFT) spin echo imaging techniques. The T1 and T2 maps show clear and significant variations of NMR signal intensity throughout the sample due to nonuniform hydrolysis of the tetraethylorthosilicate (TEOS) in the specimens.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons Inc., New York, 1988).Google Scholar
2. Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Proc., 121, Pittsburg, PA 1988).Google Scholar
3. Mansfield, P. and Grannell, P. K., Phys. Rev. B 12, 3618 (1975).Google Scholar
4. Garroway, A. N., Baum, J., Munowitz, M. G. and Pines, A., J. Magn. Reson. 60, 337 (1984).Google Scholar
5. Szeverenyi, N. M. and Maciel, G., J. Magn. Reson. 60, 460 (1984).Google Scholar
6. Luca, F. De and Maraviglia, B., J. Magn. Reson. 67, 169 (1986).Google Scholar
7. Chingas, C. G., Miller, J. B. and Garroway, A. N., J. Magn. Reson. 66, 530 (1986).Google Scholar
8. Ellingson, W. A., Ackerman, J. L., Weyand, J. D., DiMilia, R. A. and Garrido, L., Ceram. Eng. Sci. Proc. 8, 503 (1987).Google Scholar
9. Garrido, L., Ackerman, J. L., Ellingson, W. A. and Weyand, J. D., Ceram. Eng. Sci. Proc. 9, 1465 (1988).Google Scholar
10. Cory, D. G., Boer, J. C. de and Veeman, W. S., Macromolecules 22, 1618 (1989).Google Scholar
11. Miller, J. B. and Garroway, A. N., J. Magn. Reson. 82, 529 (1989).Google Scholar
12. Mark, J. E. and Sullivan, J. L., J. Chem. Phys. 66, 1006 (1977).Google Scholar
13. Jiang, C.-Y. and Mark, J. E., Makromol. Chem. 185, 2609 (1984).Google Scholar
14. Mark, J. E. and Sun, C.-C., Polym. Bull. 18, 259 (1987).Google Scholar
15. Sur, G. S. and Mark, J. E., Eur. Polym. J. 21, 1051 (1985).Google Scholar
16. Garrido, L., unpublished results.Google Scholar
17. Keefer, K. D., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E. and Ulrich, D. R. (Mater. Res. Soc. Proc., 32, Elsevier, New York, 1984), p. 1524.Google Scholar