Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:22:12.515Z Has data issue: false hasContentIssue false

Nitrogen containing hydrogenated amorphous carbon prepared by integrated distributed electron cyclotron resonance for large area field emission displays

Published online by Cambridge University Press:  14 March 2011

N. M. J. Conway
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau-Cedex, FRANCE
C. Godet
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau-Cedex, FRANCE
B. Equer
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces, Ecole Polytechnique, 91128 Palaiseau-Cedex, FRANCE
Get access

Abstract

The field emission properties of hydrogenated amorphous carbon containing up to 29at% nitrogen (a-C:N:H), grown in an integrated distributed electron cyclotron resonance (IDECR) reactor were studied using a sphere-plane geometry. All films were smooth in character and required a high field (20-70V/νm) activation process before emission, which created micron- sized craters in the emission region. Further analysis suggested that the emission originates from activation-created geometrically enhanced areas around the crater region. Upon low-level nitrogen incorporation (N/N+C≤0.2), the field required for activation decreased from 54V/νm to a minimum value of 20V/νm. The turn-on field required for 1νA of current also decreased, reaching a minimum of 11.3V/νm. The decrease in activation and turn-on field was related to the increase in conductivity observed with increasing nitrogen content. At higher nitrogen concentrations, the increase in activation energy and turn on field for emission may be due to changes in overall material structure, as indicated by the decreasing optical gap

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M.W., Efremov, N. N, Woodhouse, J. D., McAleese, M. D., Marywka, M., Socker, D. G. and Hochedez, J. F., IEEE Trans. Electron Device Lett. 12, 456 (1991)Google Scholar
2. Amaratunga, G.A.J., Silva, S.R.P., Appl. Phys. Lett. 68, 2529 (1996)Google Scholar
3. Satyanarayana, B.S., Hart, A., Milne, W.I., J. Robertson, Diam. Relat. Mater. 7, 656 (1998)Google Scholar
4. DeHeer, W. A., Chatelain, A. and Ugarte, D., Science, 270, 1179 (1995)Google Scholar
5. Coll, B.F., Jaskie, J. E., Markham, J. L., Menu, E. P., Talin, A. A., vonAllmen, P., MRS Symp. Proc., 498, 185 (1998)Google Scholar
6. Wang, C., Garcia, W., Ingram, D., Lake, M. and Kordesch, M.E., Electron Lett. 27, 1459 (1991)Google Scholar
7. Gröning, O., Küttel, O.M., Gröning, P., Schlapbach, L, J. Vac. Sci. Technol. B 17, 1064 (1999)Google Scholar
8. Robertson, J., J. Vac. Sci. Technol. B 17, 664 (1999)Google Scholar
9. Bulkin, P., Bertrand, N., Drévillon, B., Thin Solid films, 296, 66 (1997)Google Scholar
10. Tamor, M.A. and Vassell, W.C., J. Appl. Phys. 76, 3823 (1994)Google Scholar
11. Forrest, R.D., Burden, A.P., Silva, S.R.P., Cheah, L., Shi, X., Appl. Phys. Lett. 73, 3784 (1998)Google Scholar
12. Gröning, O., Küttel, O.M., Schaller, E., Gröning, P. and Schlapbach, L., Appl. Phys. Lett. 69, 476 (1996)Google Scholar
13. Talin, A.A., Felter, T. E., Friedmann, T.A., Sullivan, J.P. and Siegal, M.P., J. Vac. Sci. Technol. A 14, 1719 (1996)Google Scholar
14. Missert, N., Friedmann, T.A., Sullivan, J.P., Copeland, R.G., Appl. Phys. Lett. 70, 1995 (1997)Google Scholar
15. Conway, N., Bulkin, P., Godet, C., to be published Google Scholar
16. Fowler, R.H. and Nordheim, LW, Proc. R. Soc. London A 119, 173 (1928)Google Scholar