Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T02:45:56.719Z Has data issue: false hasContentIssue false

Nitridation by NO Or N2O of Si-SiO2 Interfaces

Published online by Cambridge University Press:  10 February 2011

A. P. Caricato
Affiliation:
INFM and Dipartimento di Fisica, Università di Modena, 41100 Modena MO, Italy
F. Cazzaniga
Affiliation:
STMicroelectronics, 20041 Agrate MI, Italy
G. F. Cerofolini
Affiliation:
STMicroelectronics, Stradale Primosole 50, 95100 Catania CT, Italy
B. Crivelli
Affiliation:
STMicroelectronics, 20041 Agrate MI, Italy
M. L. Polignano
Affiliation:
STMicroelectronics, 20041 Agrate MI, Italy
G. Tallarida
Affiliation:
Laboratorio MDM-INFM, Via Olivetti 2, 20041 Agrate MI, Italy
S. Valeri
Affiliation:
INFM and Dipartimento di Fisica, Università di Modena, 41100 Modena MO, Italy
R. Zonca
Affiliation:
STMicroelectronics, 20041 Agrate MI, Italy
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) and photocurrent measurements for the determination of surface recombination velocity provide complementary information on the structure of the Si-SiO2 interface, being sensitive to the chemical nature of foreign species at the interface the former, and to intrinsic defects the latter. The comparison of the XPS N(1s) peaks determined for the Si-Si0 2 interfaces nitrided in NO or N2O ambients is useful to identify the species responsible for the broadening of the peak. In fact, nitridation by NO is mainly responsible for the formation of Si3N moieties at the silicon surface in which silicon atoms are partially oxidized; while nitridation by N2O proceeds with the oxidation of Si – Si backbonds to Si – N bonds, thus resulting in the formation of N(Si(O-)3)3 groups embedded in the oxide. Surface recombination velocity by photocurrent measurements gives evidence that nitridation in N2O is associated with an appreciable co-oxidation, while nitridation in NO is mainly associated with the passivation of interface states. Furthermore N2O and NO nitridation are responsible for different morphologies of the nitrided layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hori, T., Gate Dielectrics and MOS ULSIs (Springer-Verlag, Berlin Heidelberg, 1997)10.1007/978-3-642-60856-8Google Scholar
2 Hori, T., Iwasaki, H., and Tsuji, K., IEEE Trans. Electron Devices 36, 340 (1989)10.1109/16.19935Google Scholar
3 Fukuda, H., Yasuda, M., Iwabuchi, T., and Ohno, S., IEEE Electron Dev. Lett. EDL–12, 587 (1991)10.1109/55.119206Google Scholar
4 Dunn, G. J. and Krick, J. T., IEEE Trans. Electron Devices 38, 901 (1991)10.1109/16.75221Google Scholar
5 Okada, Y., Tobin, P. J., and Hegde, R., Appl. Phys. Lett. 61, 3163 (1992)10.1063/1.107946Google Scholar
6 Liu, Z., Wann, H. J., Ko, P. K., Hu, C., and Cheng, Y. C., IEEE Electron Device Lett. EDL–13, 519 (1992)10.1109/55.192820Google Scholar
7 Hegde, R. I., Tobin, P. J.. Reid, K. G., Maiti, B., and Ajuria, S. A., Appl. Phys. Lett. 66, 2882 (1995)10.1063/1.113461Google Scholar
8 Lu, Z. H., Tay, S. P., cao, R. and Pianetta, P., Appl. Phys. Lett. 67, 2836 (1995)10.1063/1.114801Google Scholar
9 Bouvet, D., Clivaz, P. A., Dutoit, M., Coluzza, C., Almeida, J., Margaritondo, G., Pio, F., J. Appl. Phys. 79, 7114 (1996)10.1063/1.361481Google Scholar
10 Rignanese, G. M., Pasquarello, A., Charlier, J. C., Gonze, X., and Car, R., Phys. Rev. Lett. 79, 5174 (1997)10.1103/PhysRevLett.79.5174Google Scholar
11 Hori, T., Iwasaki, H., Naito, Y., Esaki, H., IEEE Trans. Electron Devices 34, 2238 (1987)10.1109/T-ED.1987.23226Google Scholar
12 Alessandri, M., Crivelli, B., Modelli, A., Queirolo, G., Zonca, R., Caricato, A.P., Blank, R. de, in: Proc. 16th IEEE NVSMW°98, (Monterey USA)Google Scholar
13 Green, M. L., Barsen, D., Evans-Lutterodt, K. W.. Feldman, L. C., Krisch, K., Lennard, W.. Manchada, L., Tang, H. T.. Tang, M. T., Appl. Phys. Lett. 65, 848 (1994)10.1063/1.112980Google Scholar
14 Tallarida, G., Cazzaniga, F., Crivelli, B., Zonca, R., Alessandri, M. J. Non-Cryst. Solids 00, 1 (1999)Google Scholar
15 Cerofolini, G., Caricato, A. P., Meda, L., Re, N., Sgamellotti, A. (submitted)Google Scholar
16 Polignano, M. L., Ferroni, G., Sabbadini, A., Valentini, G. Queirolo, G., J. of Non-Cryst. Solids 216, 88 (1997)10.1016/S0022-3093(97)00120-8Google Scholar
17 Letherer, B., Homer, G., Cosway, R. G., Catmull, K., Peters, M., Proc. 193rd ECS Meeting (San Diego, CA) 1998 Google Scholar