Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:37:00.539Z Has data issue: false hasContentIssue false

Nickel Silicide Structures on Single-Crystal Silicon Membranes

Published online by Cambridge University Press:  26 February 2011

P. Hren
Affiliation:
School of Applied and Engineering Physics and National Nanofabrication Facility Cornell University, Ithaca, NY 14853
A. Fernandez
Affiliation:
School of Applied and Engineering Physics and National Nanofabrication Facility Cornell University, Ithaca, NY 14853
J. Silcox
Affiliation:
School of Applied and Engineering Physics and National Nanofabrication Facility Cornell University, Ithaca, NY 14853
Get access

Abstract

Nickel structures have been deposited on large (300 μm diameter), thin (1400 to 3000Å) single crystal (111) silicon membranes. On annealing, the nickel-silicon reaction generates strain which can be partially accommodated through buckling of the membrane, a mode of strain relief not available on bulk wafers. Examples of such buckling are presented in this paper. Features of the silicide structures observed include thin epitaxial Ni2 Si that grows on clean surfaces during deposition, vertical and lateral growth of NiSi2 into the membrane from nickel dots, and the absence of interfacial dislocations between NiSi2 and silicon, probably due to the stress relief.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tu, K. N., Alessandrini, E. I., Chu, W. K., Kräutle, H. and Mayer, J. W., Jap. J. Appl. Phys., Suppl. 2, Pt. 1, 669 (1974).Google Scholar
2.Koos, V. and Neumann, H. G., Phys. Stat. Solidi A 29, Kl15 (1975).Google Scholar
3.Angilello, J., d'Heurle, F. M., Peterson, C. S. and Segmuller, A., J. Vac. Sci. Technol. 17, 471 (1980).Google Scholar
4.d'Heurle, F. M. and Gas, P., J. Mater. Res. 1(1), 205 (1986).Google Scholar
5.Lee, K. C., Silcox, J. and Lee, C. A., J. Appl. Phys. 54, 4305 (1983).Google Scholar
6.Fernandez, A., Hren, P., Lee, K. C. and Silcox, J., presented at the MRS Fall Meeting, Boston, MA (1987) (to be published).Google Scholar
7.Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
8.Föll, H., Ho, P. S. and Tu, K. N., Phil. Mag. A 45, 31 (1982).Google Scholar
9.Hunt, B. D., Schowalter, L. J., Lewis, N., Hall, E. L., Hauenstein, R. J., Schlesinger, T. E., McGill, T. M., Okamoto, M. and Hashimoto, S., in Thin Films - Interfaces and Phenomena (ed. Nemanich, R. J., Ho, P. S. and Lau, S. S. (Materials Research Society Proceedings 54, Pittsburgh, PA, 1986), pp. 479484.Google Scholar