Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:10:57.494Z Has data issue: false hasContentIssue false

New Transition-Metal Doped Germanium Clathrates

Published online by Cambridge University Press:  01 February 2011

Yang Li
Affiliation:
Department of Physics, Texas A&M University College Station, TX 77843–4242, U.S.A.
Joseph H. Ross Jr
Affiliation:
Department of Physics, Texas A&M University College Station, TX 77843–4242, U.S.A.
Get access

Abstract

We have investigated transition-metal substitutions into germanium clathrates, and describe the properties of two different Fe-substituted Ge clathrates, one with the chiral Ba6Ge25-type clathrate structure, and one based on the Ba6Ga16Ge30 clathrate with the type-I structure. In both cases Fe exhibits a high-spin local moment, with 5.5 μB and 5.6 μB per Fe. We observe ferromagnetic ordering, with Tc up to 278 K in the most heavily substituted Ba6Ga16Ge30 clathrate. X-ray powder diffraction and electron microprobe measurements confirmed the formation of these substituted phases. Ni-doped type I clathrates were found to be diamagnetic. Strong competition from Mn11Ge8 makes it difficult to produce pure Mn-doped clathrates, however a composite material with partially substituted chiral structure is described. Similar efforts to produce Co, Cr, and V-substituted clathrates have not been successful.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
2. Gryko, J., Mcmillan, P. F., Phys. Rev. B 57, 4172 (1998);Google Scholar
Moriguchi, K., Yonemura, M., Shintani, A., and Yamanaka, S., Phys. Rev. B 61 9859 (2000).Google Scholar
3. Kawaji, H., Horie, H., Yamanaka, S., Phys. Rev. Lett. 74, 1427 (1995).Google Scholar
4. Mahan, G. D., Solid State Phys. 51, 81 (1998);Google Scholar
Nolas, G. S., Sharp, S. and Goldsmid, H. J., Thermoelectrics, Basic Principles and New Materials Developments, (Springer, New York, 2001).Google Scholar
5. Cordier, G. and Woll, P., J. Less-Common Met. 169, 291 (1991).Google Scholar
6. Li, Y., Chi, J., Gou, W., Khandekar, S. and Ross, J. H. Jr, J. Phys. Condens. Matt. 15, 5535 (2003).Google Scholar
7. Li, Y., Gou, W., Chi, J., and Ross, J. H. Jr, to appear.Google Scholar
8. Kawaguchi, T., Tanigaki, K., and Yasukawa, M., Appl. Phys. Lett. 77, 3438 (2000).Google Scholar
9. Sales, B. C., Chakoumakos, B. C., Jin, R., Thompson, J. R., and Mandrus, D., Phys. Rev. B 64, 245113 (2001).Google Scholar
10. Li, Yang and Ross, J. H. Jr, Appl. Phys. Lett. 83, 2868 (2003).Google Scholar
11. Li, Y., Vagizov, F., Ross, J. H. Jr, to be published.Google Scholar
12. Ohno, H., Science 281, 951 (1998);Google Scholar
Dietl, T., Ohno, H., and Matsukura, F., Phys. Rev. B 63, 195205 (2001).Google Scholar
13. Chambers, S. A. and Yoo, Y. K., MRS Bulletin October 2003 p. 706, and other articles in this issue.Google Scholar
14. Zunger, A., Ann. Rev. Mater. Sci. 15, 411 (1985);Google Scholar
Kikoin, K. A. and Fleurov, V. N., Transition Metal Impurities in Semiconductors (World Scientific, Singapore, 1994).Google Scholar
15. Park, Y. D., Hanbicki, A. T., Erwin, S. C., Hellberg, C. S., Sullivan, J. M., Mattson, J. E., Ambrose, T. F., Wilson, A., Spanos, G., and Jonker, B. T., Science 295, 651 (2002).Google Scholar
16. Larson, C. and Von Dreele, R. B., “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR 86748 (2000);Google Scholar
Toby, B. H., J. Appl. Cryst. 34, 210 (2001).Google Scholar
17. Nolas, G. S. and Kendziora, C. A., Phys. Rev. B 62, 7157 (2000).Google Scholar
18. Zhang, Y., Lee, P. L., Nolas, G. S., Wilkinson, A. P., Appl. Phys. Lett. 80, 2931 (2002).Google Scholar
19. Mandrus, D., Keppens, V., Sales, B. C., and Sarrao, J. L., Phys. Rev. B 58, 3712 (1998).Google Scholar
20. Park, Y. D., Wilson, A., Hanbicki, A. T., Mattson, J. E., Ambrose, T., Spanos, G., and Jonker, B. T., Appl. Phys. Lett. 78, 2739 (2001).Google Scholar
21. Paschen, S., Tran, V. H., Baenitz, M., Carrillo-Cabrera, W., Grin, Yu., and Steglich, F., Phys. Rev. B 65, 134435 (2002).Google Scholar