Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T16:30:03.411Z Has data issue: false hasContentIssue false

A New Transfer Technique for Graphene Deposited by CVD on Metal Thin Films

Published online by Cambridge University Press:  22 May 2014

G. Amato
Affiliation:
The Quantum Research Laboratory, INRIM, strada delle Cacce 91, I-10135, Torino, Italy
E. Simonetto
Affiliation:
The Quantum Research Laboratory, INRIM, strada delle Cacce 91, I-10135, Torino, Italy Dept. of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
L. Croin
Affiliation:
The Quantum Research Laboratory, INRIM, strada delle Cacce 91, I-10135, Torino, Italy Dept. of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
E. Vittone
Affiliation:
Physics Dept. and NIS center, University of Turin, Via Pietro Giuria 1, I-10125, Torino, Italy.
Get access

Abstract

Chemical Vapor Deposition of graphene on metallic substrates is one of the most attracting techniques for large area graphene production. The technique widely employed for transferring graphene to other substrates involves deposition of a polymer support with subsequent etching of the metal substrate. Here we report a safer transfer process, which requires a two-step PMMA deposition and bonding under pressure. Sheets of graphene before and after transfer have been both characterized by Raman spectroscopy, and show comparable quality, indicating that the proposed technique does not introduce additional defects in graphene.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., Nano Lett., vol. 9, no. 1, pp. 3035, (2009).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science, vol. 324, no. 5932, pp. 13121314, (2009).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Özyilmaz, B., Ahn, J.-H., Hong, B. H., and Iijima, S., Nat. Nanotechnol., vol. 5, no. 8, pp. 574578, (2010).CrossRefGoogle Scholar
Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., and Mizuguchi, Y., Appl. Phys. Lett., vol. 102, no. 2, pp. 023112–023112, (2013).CrossRefGoogle Scholar
Bajpai, R., Roy, S., Jain, L., Kulshrestha, N., Hazra, K. S., and Misra, D. S., Nanotechnology, vol. 22, no. 22, p. 225606, (2011).CrossRefGoogle Scholar
Gao, L., Ni, G.-X., Liu, Y., Liu, B., Castro Neto, A. H., and Loh, K. P., Nature, vol. 505 pp 190194, (2013).CrossRefGoogle Scholar
Zhu, X., Liu, G., Guo, Y., and Tian, Y., Microsyst. Technol., vol. 13, no. 3–4, pp. 403407, (2006).CrossRefGoogle Scholar
Tao, L., Lee, J., Chou, H., Holt, M., Ruoff, R. S., and Akinwande, D., ACS Nano, vol. 6, no. 3, pp. 23192325, (2012).CrossRefGoogle Scholar
Croin, L., Milano, G., Vittone, E., and Amato, G., this volume, (2013).Google Scholar
Piazzi, M., Croin, L., Vittone, E., and Amato, G., SpringerPlus, vol. 1, no. 1, p. 52, (2012).CrossRefGoogle Scholar
Ferrari, A. C. and Basko, D. M., Nat. Nanotechnol., vol. 8, no. 4, pp. 235246, (2013).CrossRefGoogle Scholar
Thomas, K. J., Sheeba, M., Nampoori, V. P. N., Vallabhan, C. P. G., and Radhakrishnan, P., J. Opt. Pure Appl. Opt., vol. 10, no. 5, p. 055303, (2008).CrossRefGoogle Scholar
Perdereau, J. and Rhead, G. E., Surf. Sci., vol. 24, no. 2, pp. 555571, (1971).CrossRefGoogle Scholar
Tombros, N., Veligura, A., Junesch, J., van den Berg, J. Jasper, Zomer, P. J., Wojtaszek, M., Vera Marun, I. J., Jonkman, H. T., van Wees, B. J., J. of Appl. Phys., 109, pp. 093702, (2011).CrossRefGoogle Scholar