Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-05T14:48:06.690Z Has data issue: false hasContentIssue false

New Theoretical Treatment of Electroreflectance from Surfaces and Interfaces Having Large Built-in Fields

Published online by Cambridge University Press:  21 February 2011

J. W. Garland
Affiliation:
Physics Department, University of Illinois at Chicago, Chicago, IL 60607
Z. Zhang
Affiliation:
Physics Department, University of Illinois at Chicago, Chicago, IL 60607
C. Kim
Affiliation:
Physics Department, University of Illinois at Chicago, Chicago, IL 60607
D. Yang
Affiliation:
Physics Department, University of Illinois at Chicago, Chicago, IL 60607
P. M. Raccah
Affiliation:
deceased
Get access

Abstract

We have constructed a completely quantum-mechanical theoretical treatment of the modification of the local dielectric function by intense electric fields. It includes the numerical calculation of depletion-region bound-state energies and wavefunctions as well as band wavefunctions. We use this treatment to construct electroreflectance (ER) lineshapes. Our numerical results differ significantly from those of previously proposed ER lineshapes for GaAs with Nd >> 1016. They yield excellent fits to ER data and allow the accurate determination of doping levels and band bendings from ER data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Razeghi, M., Yang, D., Garland, J.W., Zhang, Z. and Xue, D.Z., to be published, SPIE Proceedings, Vol.1675.Google Scholar
2. Kassel, L., Garland, J.W., Abad, H., Raccah, P.M., Potts, J.E., Haase, M.A. and Cheng, H., Appl. Phys. Lett. 56, 42 (1990).CrossRefGoogle Scholar
3. Kassel, L., Garland, J.W., Raccah, P.M., Haase, M.A. and Cheng, H., Semicond. Sci. Technol. 6, A146 (1991).CrossRefGoogle Scholar
4. Kassel, L., Garland, J.W., Raccah, P.M., Tamargo, M.C. and Farrell, H.H., Semicond. Sci. Technol. 6, A152 (1991).CrossRefGoogle Scholar
5. Yang, D., Garland, J.W., Raccah, P.M., Coluzza, C., Frankl, P., Capizzi, M., Chambers, F. and Devane, G., Appl. Phys. Lett. 57, 2829 (1990); D. Yang, J.W. Garland, P.M. Raccah, C. Coluzza, P. Frankl, M. Capizzi, F. Chambers and G. Devane, Physica B170, 557 (1991).CrossRefGoogle Scholar
6. Shen, H. and Pollak, F.H., Phys. Rev. B42, 7097 (1990).CrossRefGoogle Scholar
7. Batchelor, R.A., Brown, A.C. and Hamnett, A., Phys. Rev. B41, 1401 (1990).CrossRefGoogle Scholar
8. Aspnes, D.E., Phys. Rev. B10, 4228 (1974).CrossRefGoogle Scholar
9. Aspnes, D.E. and Frova, A., Solid State Commun. 7, 155 (1969).CrossRefGoogle Scholar
10. Sole, R.Del, J. Phys. C: Solid State Phys. 8, 2971 (1975).CrossRefGoogle Scholar
11. Sole, R.Del, Solid State Commun. 19, 207 (1976); R. Del Sole and D.E. Aspnes, Il Nuovo Cim. 39B, 805 (1977); R. Del Sole, Phys. Rev. B17, 3310 (1978).CrossRefGoogle Scholar
12. Jackson, P.L. and Seebauer, E.G., J. Appl. Phys. 69, 943 (1991).CrossRefGoogle Scholar
13. A sample numerical calculation indicates that a full self-consistent calculation of the charge density in the depletion region does not significantly change our results.Google Scholar
14. Badakhshan, A., Glosser, R. and Lambert, S., J. Appl. Phys. 69, 2525 (1991); A. Badakhshan, R. Glosser, S. Lambert, M. Anthony, R.S. Sillman, P.E. Thompson and K. Alavi, Appl. Phys. Lett. 59, 1218 (1991).CrossRefGoogle Scholar