Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T15:17:23.787Z Has data issue: false hasContentIssue false

A New Technique for the Characterization of the Adhesion in Integrated Circuit Interconnect Structures

Published online by Cambridge University Press:  01 February 2011

Ibon Ocana
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Jon M. Molina
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Diego Gonzalez
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
M. Reyes Elizalde
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Jose M. Sanchez
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Jose M. Martinez-Esnaola
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Javier Gil-Sevillano
Affiliation:
CEIT and TECNUN (University of Navarra), P. Manuel Lardizabal 15, 20018 San Sebastiàn, Spain
Tracey Scherban
Affiliation:
Daniel Pantuso
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Brad Sun
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Guanghai Xu
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Barbara Miner
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Jun He
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Jose A. Maiz
Affiliation:
Logic Technology Development, Intel Corporation, Hillsboro 97124 (OR), USA.
Get access

Abstract

A new testing technique for the characterization of the mechanical behavior of the interconnect structures of integrated circuit devices is introduced in this paper. Modified crosssectional nanoindentation (MCSN) is the result of extending cross-sectional indentation (CSN) to patterned structures. As in conventional CSN, a Berkovich indenter is used to initiate fracture in the silicon substrate beneath the interconnect structure. The cracks propagate through this structure, preferentially along the weakest interfaces in the system. A FIB (Focused Ion Beam) is used for sample preparation, machining a trench parallel to the indentation surface. In this way, the crack growth can be better controlled and the problem may be modeled in two dimensions.

The technique has been used to study crack propagation in patterned structures as a function of thin film composition and processing. The results obtained, in terms of crack length along each interface studied, correlate well with the fracture energy measured by four-point bending (4 PB) in blanket films of the same materials. Finite element modeling of the stress fields in the vicinity of the crack tip has been carried out to understand the crack paths observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nix, W.D. Met. Mater. Trans. A, 20A, 2217. (1989)Google Scholar
2. Iawi, H. Ohmi, S. Microelectronics Reliability, 42, 465. (2002)Google Scholar
3. Reynard, J. P. Veroe, C. Sabouret, E. Motte, P. Descouts, B. Chaton, C. Michailos, J. Barla, K. Microelectronic Engineering, 60, 13. (2002)Google Scholar
4. Evans, A.G. Hutchinson, J.W. Acta Metall. Mater., 43, 2507. (1995)Google Scholar
5. Tvergaard, V. Hutchinson, J.W. J. Mech. Phys. Solids, 440, 1377. (1992)Google Scholar
6. Suo, Z. Shis, C.F. Varias, A.G. Acta Metall. Mater., 41, 1551. (1993)Google Scholar
7. Wei, Y. Hutchinson, J.W. J. Mech. Phys. Solids, 45, 1137. (1997)Google Scholar
8. Wei, Y. Hutchinson, J.W. J. Mech. Phys. Solids, 45, 1253. (1997)Google Scholar
9. Fleck, N.A. Hutchinson, J.W. Adv. Appl. Mech., 33, 295. (1997)Google Scholar
10. Wei, Y. Hutchinson, J.W. Int. J. Fract., 95, 1. (1999)Google Scholar
11. Hutchinson, J.W. Evans, A.G. Acta Mater. 48, 125. (2000)Google Scholar
12. Tvergaard, V., J. Mech. Phys. Solids, 49, 2689. (2001)Google Scholar
13. Liu, P. Cheng, L. Zhang, Y.W. Acta Mater., 49, 817. (2001)Google Scholar
14. Martinez-Esnaola, J.M. Sanchez, J.M. Elizalde, M.R. Martin-Meizoso, A. In: Fracture Mechanics: Applications and Challenges. Oxford: Elsevier Science; ESIS publication 26, p. 47. (2000)Google Scholar
15. Elizalde, M.R. Sanchez, J.M. Martinez-Esnaola, J.M. Pantuso, D. Scherban, T. Sun, B. Xu, G. Acta Mater., 51, 4295. (2003)Google Scholar
16 Volinsky, A.A. Moody, N.R. Gerberich, W.W. Acta Mater., 50, 441. (2002)Google Scholar
17 Sanchez, J.M. El-Mansy, S. Sun, B. Scherban, T. Fang, N. Pantuso, D.et al., Acta Mater., 47, 4405. (1999)Google Scholar
18 Scherban, T. Pantuso, D. Sun, B. El-Mansy, S. Xu, G. Elizalde, M.R. Sanchez, J.M. and Martinez, J.M. Int. J. of Fract., 119/120, 421. (2003).Google Scholar
19 Dauskardt, R.H. Lane, M. Ma, Q. Krishna, N. Eng. Fract. Mech., 61, 141. (1998)Google Scholar
20 Scherban, T. Sun, B. Blaine, J. Block, C. Andideh, E. IEEE IITC Proceedings, 242 (2001).Google Scholar
21 Kloster, G. Scherban, T. Xu, G. Blaine, J. Sun, B. IEEE IITC Proceedings, 257 (2002).Google Scholar
22 Litteken, C.S. Dauskardt, R.H. Int. J. of Fract., 119/120, 475. (2003)Google Scholar
23 Litteken, C. Dauskardt, R. Scherban, T. Xu, G. Leu, J. Gracias, D. and Sun, B. IEEE IITC Proceedings, 168 (2003).Google Scholar
24. Jan, C.H. Bielefeld, J., Buehler, M. Chikamane, V. Fischer, K. Hepburn, T. Jain, A. Jeong, J. Kielty, T. Kook, S. Marieb, T. Miner, B. Nguyen, P. Schmitz, A. Nashner, M. Scherban, T. Schroeder, B. Wang, P.H. Wu, R. Xu, J. Zawadzki, K. Thompson, S. and Bohr, M., IEEE IITC Proceedings, 15 (2003).Google Scholar
25. Xu, G. He, J. Andideh, E. Bielefeld, J. Scherban, T. IEEE IITC Proceedings, 57 (2002).Google Scholar