Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:24:44.026Z Has data issue: false hasContentIssue false

New Technique for AB Initio Atomistic Potentials and Application to Thermal Expansion of Ni/Cr Alloys

Published online by Cambridge University Press:  01 January 1992

J. Mei
Affiliation:
West Virginia University, Department of Physics, Morgantown, WV 26506.
B.R. Cooper
Affiliation:
West Virginia University, Department of Physics, Morgantown, WV 26506.
Y.G. Hao
Affiliation:
West Virginia University, Department of Physics, Morgantown, WV 26506.
S.P. Lim
Affiliation:
West Virginia University, Department of Physics, Morgantown, WV 26506.
F.L. VanScoy
Affiliation:
West Virginia University, Department of Computer Science, Morgantown, WV 26506.
Get access

Abstract

A scheme of developing ab initio many body potentials based on total energy calculations within density functional theory (DFT) is presented and demonstrated for transition metal alloys. An ab initio interatomic potential for Ni/Cr alloys is constructed with no input from experimental data. Molecular dynamics simulations have been performed to study thermal expansions. The coefficient of thermal expansion (CTE) has been calculated over a wide range of temperature, and good agreement is obtained between theory and experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moriarty, J. A., Phys. Rev. B 38, 3199 (1988).Google Scholar
2. Hohenberg, P. and Kohn, W., Phys. Rev. B 136, 864(1964); Kohn, W. and Sham, L. J., Phys. Rev. A 140, 1133(1965).Google Scholar
3. Price, D. L. and Cooper, B. R., Phys. Rev. B. 30, 4945 (1989); Anderson, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
4. Moriarty, J. A. and Phillips, R., Phys. Rev. Lett. 66, 3036 (1991).Google Scholar
5. Jacobsen, K. W., Nφrskov, J. K., and Puska, M. J., Phys. Rev. B 35, 7423(1987)Google Scholar
6. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285(1983), Phys. Rev. B 29 , 6443(1984).Google Scholar
7. Vosko, S. H., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200(1980).Google Scholar
8. Mei, J. and Cooper, B. R., to be publishedGoogle Scholar
9. Mei, J., Davenport, J. W., and Fernando, G. W., Phys. Rev. B 43, 4653(1991).Google Scholar
10. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262(1985).Google Scholar
11. Hoover, W. G., Ladd, A. J. C., and Moran, B., Phys. Rev. Lett. 48, 1818(1982); Evans, D. J., J. Chem. Phys. 78, 3297(1983).Google Scholar
12. Andersen, H. C., J. Chem. Phys. 72, 2384(1980).Google Scholar
13. Gear, C. W., “Numerical initial value problems in ordinary differential equations”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.Google Scholar
14. Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D., Thermophysical properties of Matter, Vol. 12, IFI/Plenum New York-Washington 1975.Google Scholar
15.Data provided by INCO Alloys International.Google Scholar