Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:17:51.242Z Has data issue: false hasContentIssue false

A New Purged UV Spectroscopic Ellipsometer to characterize 157nm nanolithographic materials

Published online by Cambridge University Press:  10 February 2011

Pierre Boher
Affiliation:
SOPRA S.A., 26 rue Pierre Joigneaux, 92270 BOIS COLOMBES, France.
Jean Philippe Piel
Affiliation:
SOPRA S.A., 26 rue Pierre Joigneaux, 92270 BOIS COLOMBES, France.
Patrick Evrard
Affiliation:
SOPRA S.A., 26 rue Pierre Joigneaux, 92270 BOIS COLOMBES, France.
Jean Louis Stehle
Affiliation:
SOPRA S.A., 26 rue Pierre Joigneaux, 92270 BOIS COLOMBES, France.
Get access

Abstract

Spectroscopic ellipsometry has long been recognized as the technique of choice to characterize thin films and multilayers. It is now intensively used in microelectronics and especially for the microlithographic applications. Instrumentation for the next generation of UV lithography at 157nm requires special optical setup since oxygen and water are extremely absorbing below 190nm. The ellipsometer discussed in this paper works into a purged glove box to reduce the oxygen and water contamination in the part per million ranges. The optical setup has been especially studied for microlithographic applications. It includes for example a premonochromator in the polariser arm to avoid resist photobleaching. Technical details of the system and some first measurement results on substrates and thin films are reported hereafter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Boher, P., Piel, J.P., Defranoux, C., Stehle, J.L., Hennet, L., SPIE vol. 2729 (1996)Google Scholar
2.Boher, P., Stehle, J.L, Materials. Science and Engineering, B37, 116 (1996)Google Scholar
3.Boher, P., Defranoux, C., Piel, J.P., Stehle, J.L., SPIE, vol. 3678, p. 126 (1999)Google Scholar
4.Boher, P., Defranoux, C., Piel, J.P., Stehle, J.L., SPIE symposium on microelectronic manufacturing technologies, 18– May 1999Google Scholar
5.Tousey, R.. Phys. Rev. 50, 1057 (1936).Google Scholar
6. “Physikalisch-Chemische Tabellen,” (Roth, W. A., Scheel, K., eds.), Edwards Brothers, Inc., Berlin, 911 (1923).Google Scholar
7.Martens, F. F.. Ann. Physik 6, 603 (1901).Google Scholar
8.Malitson, H.. Appl. Opt. 2, 1103 (1963).Google Scholar
9.Weinberg, Z. A., Rubloff, G. W., Bassous, E.. Phys. Rev. B 19, 3107 (1979).Google Scholar
10.Kaminow, I. P., Bagley, B. G., Olson, C. G.. Appl. Phys. Lett. 32, 98 (1978).Google Scholar
11.Brixner, B.. J. Opt. Soc. Am. 57, 674 (1967).Google Scholar
12.Chinaudom, P., Vedam, K., Thin Solid Films, 234, 439 (1993).Google Scholar
13.Bloomstein, T.M., Liberman, V., Rothschild, M., SPIE vol. 3676, 342 (1999)Google Scholar