Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:36:35.670Z Has data issue: false hasContentIssue false

New Method For First Principles Modeling of Electron Transport through Nanoelectronic Devices.

Published online by Cambridge University Press:  17 March 2011

Mads Brandbyge
Affiliation:
Mikroelektronik Centret, Technical University of Denmark, Lyngby, Denmark
Kurt Stokbro
Affiliation:
Mikroelektronik Centret, Technical University of Denmark, Lyngby, Denmark
Jeremy Taylor
Affiliation:
Mikroelektronik Centret, Technical University of Denmark, Lyngby, Denmark
Jose-Luis Mozos
Affiliation:
Institut de Ciencia de Materials de Barcelona - CSIC Campus de la U.A.B., Spain
Pablo Ordejón
Affiliation:
Institut de Ciencia de Materials de Barcelona - CSIC Campus de la U.A.B., Spain
Get access

Abstract

In this paper we present a new theoretical method for modeling electron transport through nanostructures under non-equilibrium conditions. The electronic structure of the nanostructures are modeled from first principles and are described selfconsistently under the non-equilibrium conditions by means of a Green's function technique. The method is used to calculate the electron transport through benzene-dithiolate connected to two gold chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1[ Brandbyge, M., Kobayashi, N., and Tsukada, M., Phys. Rev. B 60, 17064 (1999).Google Scholar
[2[ Sánchez-Portal, D., Ordejón, P., Artacho, E., Soler, J. M., Int. J. Quantum Chem. 65, 453461 (1997); P. Ordejón, Phys. Stat. Sol. (b) 217, 335 (2000).Google Scholar
[3[ Independent of the present work a similar method (MCDCAL) has been developed by Taylor et al.: Taylor, J., Guo, H. (submitted); J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63 (to be published); J. Taylor, Ph. D Thesis, McGill University, Montreal, Canada (2000).Google Scholar
[4[ Wildberger, K., Lang, P., Zeller, R., and Dederichs, P. H., Phys. Rev. B 52, 11502 (1995).Google Scholar
[5[ Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P., and Tour, J. M., Science 278, 252 (1997).Google Scholar
[6[ Ventra, M. Di, Pantelides, S. T., and Lang, N. D., Phys. Rev. Lett. 84, 979 (2000).Google Scholar