No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
A novel MEMS technology using multi-layer poly-silicon (poly-Si) is proposed. The poly-Si film is formed from the new Nickel-Induced-Lateral-Crystallization (NILC) method and has very large grain (>10νm) and near crystal quality. 700 nm thermal oxide was grown on a Si wafer. 100 nm LPCVD amorphous Si was deposited and followed by a 50 Å Ni deposition. The a-Si was crystallized at 550°C for 65 hours and subsequent 800°C for 2 hours to form the first (lower) NILC poly-Si layer. N-channel TFTs were fabricated on the NILC polysilicon layer. The process was repeated and a second (upper) polysilicon layer and TFTs were formed on top of the first polysilicon layer.
The lower polysilicon has slightly larger grains and better material quality. Thin-film- transistors (TFT) fabricated on the 3-dimensional (3-D) poly-Si layers have I-V characteristics similar to (>40%) silicon-on-insulator TFTs. While TFTs on lower layer have better mobility and device properties, TFTs on upper layer have better uniformity. The accumulated heating and other effects have also been studied.