Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:06:02.877Z Has data issue: false hasContentIssue false

A New Look At Amorphous Vs Microcrystalline Structure

Published online by Cambridge University Press:  21 February 2011

Frans Spaepen*
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
Get access

Abstract

Historically, non-periodic models have usually found preference over microcrystalline ones for describing the structure of amorphous materials. Nevertheless, truly microcrystalline materials do exist, and the characteristic, monotonically decreasing isothermal calorimetric signal associated with the growth of the grains, can sometimes be used to identify them unambiguously. An example of the identification of the micro-quasicrystalline structure of some sputtered aluminum-transition metal alloys is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zachariasen, W.H., J. Amer. Chem. Soc. 54, 3841 (1932).Google Scholar
2. Warren, B.E., J. Appl. Phys. 8, 645 (1937); B. E. Warren, H. Krutter, and O. Morningstar, J. Amer. Ceram. Soc. 19, 202 (1936); R.L. Mozzi and B.E. Warren, J. Appl. Cryst. 2, 164 (1969).CrossRefGoogle Scholar
3. Wright, A.C., J. Non-Cryst. Solids 75, 15 (1985).Google Scholar
4. Bell, R. J. and Dean, P., Phil. Mag 25, 1381 (1972).Google Scholar
5. Randall, J.T., Rooksby, H.P., and Cooper, B.S., Z. Krist. 75, 196 (1930).Google Scholar
6. Phillips, J.C., Solid State Physics 37, 93 (1982).CrossRefGoogle Scholar
7. Valenkov, N. and Porai-Koshits, E.A., Z. Krist. 95, 195 (1936).Google Scholar
8. Weinstein, F.C. and Davis, E.A., J. Non-cryst. Sol. 13, 153 (1973).Google Scholar
9. Polk, D.E., J. Non-cryst. Sol. 5, 365 (1971).CrossRefGoogle Scholar
10. Chaudhari, P. and Graczyk, J.F., Proc. 5th Int. Conf. on Liquid and Amorphous Semiconductors, ed. by J., Stuke and W., Brenig, Taylor and Francis, London (1974), p. 59.Google Scholar
11. Zallen, R., The Physics of Amorphous Solids, Wiley, New York (1983).CrossRefGoogle Scholar
12. Moss, S. C. and Graczyk, J.F., Phys. Rev. Lett. 23, 1167 (1969).Google Scholar
13. Rudee, M.L., Phys. Sta. Sol. B46, K1 (1971); M.L. Rudee and A. Howie, Phil. Mag. 25, 1001 (1972).Google Scholar
14. Ast, D.G., Krakow, W. and Goldfarb, W., Phil Mag. 33, 985 (1976).Google Scholar
15. Flory, P.J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953).Google Scholar
16. Yeh, G.S.Y., J. Macromol. Sci. B6, 451, 465 (1972).CrossRefGoogle Scholar
17. Pechhold, W. and Blasenbrey, S., Kolloid Z. u. Z. Polymere, 214, 955 (1970).Google Scholar
18. Fischer, E.W. and Dettenmaier, M., J. Non-cryst. Sol. 31, 181 (1987).Google Scholar
19. Prins, J.A. and Petersen, H., Physica 3, 147 (1936).Google Scholar
20. Mott, N.F. and Gurney, R.W., Trans. Farad. Soc 35, 364 (1939).Google Scholar
21. IIICargill, G.S., Sol. St. Phys. 30, edited by H., Ehrenreich, F., Seitz and D., Tumbull, 227320 (Academic Press, NY, 1975).Google Scholar
22. Faber, T. E., Introduction to the Theory of Liquid Metals, Cambridge University Press, (1972), chapter 2.Google Scholar
23. Tumbull, D., J. Chem. Phys. 20, 411 (1952).CrossRefGoogle Scholar
24. Bernal, J.D., Proc. Roy. Soc. A 280, 299 (1964).Google Scholar
25. Finney, J.L., Proc. Roy. Soc. A 319, 497 (1970).Google Scholar
26. Bourdreaux, D.S. and Gregor, J.M., J.Appl. Phys. 48, 152, 5057 (1977).Google Scholar
27. Nelson, D.R. and Spaepen, F., Solid State Physics 42 (1989), to appear.Google Scholar
28. Gaskell, P.H., in Glassy Metals II, Topics in Applied Physics 53, 529 (Springer, Berlin, 1983).Google Scholar
29. Turnbull, D. and Cormia, R.L., J. Appl. Phys. 31, 674 (1960).Google Scholar
30. Bragg, W.L. and Nye, J.F., Proc. Roy. Soc. 190, 474 (1947) Figure 12a.Google Scholar
31. Birringer, R., Herr, U. and Gleiter, H., Suppl. Trans. Jap. Inst. Met. 27, 43 (1986).Google Scholar
32. Wagner, C.N.J., Light, T.B., Halder, N.C., and Lukens, W.E., J. Appl. Phys. 39, 36903693 (1968).Google Scholar
33. Bendersky, L.A. and Ridder, D., J. Mater. Res. 1, 405414 (1986).Google Scholar
34. Robertson, J.L., Moss, S.C., and Kreider, K.G., Phys. Rev. Lett. 60, 20622065 (1988).CrossRefGoogle Scholar
35. Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd edition, 525548 (Pergamon, Oxford, 1975).Google Scholar
36. Atkinson, H.V., Acta Metall. 36, 469491 (1988).Google Scholar
37. Thompson, C.V., Frost, H.J., and Spaepen, F., Acta Metall. 35, 887890 (1987).Google Scholar
38. Chen, L.C. and Spaepen, F., Nature 336, 366368 (1988).Google Scholar
39. Chen, L.C., Spaepen, F., Robertson, J.L., Moss, S.C., and Hiraga, K., to be published.Google Scholar
40. Greer, A.L., Acta Metall. 30, 171192 (1982).Google Scholar
41. Chen, L.C. and Spaepen, F., to be published.Google Scholar