Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T01:39:04.098Z Has data issue: false hasContentIssue false

New Insight into Electrochemical Differences in Cycling Behaviors of a Lithium-ion Battery Cell Between the Ethylene Carbonate- and Propylene Carbonate-Based Electrolytes

Published online by Cambridge University Press:  04 April 2011

Ken Tasaki
Affiliation:
Mitsubishi Chemical USA, 410 Palos Verdes Blvd., Redondo Beach, CA 90277.
Alexander Goldberg
Affiliation:
Accelrys Software Inc., 10188 Telesis Ct., San Diego, CA 92121.
Jian-Jie Liang
Affiliation:
Accelrys Software Inc., 10188 Telesis Ct., San Diego, CA 92121.
Martin Winter
Affiliation:
Institut für Physikalishe Chemie, Westfälishe Wilhelm-Universität Münster, Münster, Germany.
Get access

Abstract

Density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations have been performed to gain insight into the difference in cycling behaviors between the ethylene carbonate (EC)-based and the propylene carbonate (PC)-based electrolytes in lithium-ion battery cells. DFT calculations for the ternary graphite intercalation compounds (Li+(S)iCn: S=EC or PC), in which the solvated lithium ion Li+(S)i (i=1~3) was inserted into a graphite cell, suggested that Li+(EC)iCn was more stable than Li+(PC)iCn in general. Furthermore, Li+(PC)3Cn was found to be energetically unfavorable, while Li+(PC)2Cn was stable, relative to their corresponding Li+(PC)i in the bulk electrolyte. The calculations also revealed severe structural distortions of the PC molecule in Li+(PC)3Cn, suggesting a rapid kinetic effect on PC decomposition reactions, as compared to decompositions of EC. In addition, MD simulations were carried out to examine the solvation structures at a high salt concentration: 2.45 mo kg-1. The results showed that the solvation structure was significantly interrupted by the counter anions, having a smaller solvation number than that at a lower salt concentration (0.83 mol kg-1). We propose that at high salt concentrations, the lithium desolvation may be facilitated due to the increased contact ion pairs, so that a stable ternary GIC with less solvent molecules can be formed without the destruction of graphite particles, followed by solid-electrolyte-interface film formation reactions. The results from both DFT calculations and MD simulations are consistent with the recent experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Besenhard, J. O. and Fritz, H. P., J. Electrochem. Soc. 3, 329 (1974).Google Scholar
2. Winter, M. and Besenhard, J. O., In Lithium Ion Batteries: Fundamentals and Performances, edited by Wakihara, M. and Yamamot, O., (Wiley-VCH, 1999) pp. 127.Google Scholar
3. Jeong, S.-K., Inaba, M., Abe, T., and Ogumi, Z., , Z. J. Electrochem. Soc. 148, A989 (2001).Google Scholar
4. Aurbach, D., Levi, M. D., Levi, E., Schechter, A., J. Phys. Chem. B 101, 2195 (1997).Google Scholar
5. Yazami, R., Electrochimica Acta 45, 87 (1999).Google Scholar
6. Wang, Y., Nakamura, S., Ue, M., and Balbuena, P. B., J. Am. Chem. Soc. 123, 11708 (2001).Google Scholar
7. Tasaki, K., J. Phys. Chem. B, 109, 2920 (2005).Google Scholar
8. Jeong, S.-K., Inaba, M., Iriyama, Y., Abe, T., and Ogumi, Z., J. Power Sources 175, 540 (2008).Google Scholar
9. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
10. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).Google Scholar
11. Langreth, C., and Perdew, J. P., Phys. Rev. B 21, 5469 (1980).Google Scholar
12. Delley, B., J. Chem. Phys. 92, 508 (1990).Google Scholar
13. Eaborn, C., Hitchcock, P.B., Smith, J.D., and Sullivan, A.C., J. Organomet. Chem. C23, 263 (1984).Google Scholar
14. Hyodo, S. and Okabayashi, K., Electrochim. Act 34, 1551 (1989).Google Scholar
15. Xuan, X., Wang, J., Tang, J., Qu, G., and Lu, J., Phys. Chem. Liq. 39, 327 (2001).Google Scholar
16. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
17. Kganyago, K. R. and Ngoepe, P. E., Physical Review B 68, 205111 (2003).Google Scholar
18. Dappe, Y. J., Basanta, M. A., Flores, F., and Ortega, J., Physical Review B 74, 205434 (2006).Google Scholar
19. Qi, Y., Guo, H., Hector, L. G. Jr., and Timmons, A., J. Electrochem. Soc. 157, A558 (2010).Google Scholar
20. Nicklow, R., Wakabayashi, N., and Smith, H. G., Phys. Rev. B5, 4951 (1972).Google Scholar
21. Delley, B., J. Chem. Phys. 94, 7245 (1991).Google Scholar
22. DMol 3™, V4.3, Accelrys, Inc., 10188 Telesis Court, Suite 100, San Diego, CA 92121.Google Scholar
23. Ewald, P., Ann Phys 54, 519 (1918).Google Scholar
24. Sun, H., J. Phys. Chem. B 102, 7338 (1998).Google Scholar
25. Bondi, A., J. Phys. Chem. 68, 441 (1964).Google Scholar
26. Wang, Y. and Balbuena, P. B., J. Phys. Chem. B 107, 5502 (2003).Google Scholar
27. Zhao, Y., Kim, Y.-H., Simpson, L. J., Dillon, A. C., Wei, S.-H., and Heben, M. J., Phys. Rev. B 78, 144102 (2008).Google Scholar
28. Wang, H. and Yoshio, M., Chem. Commun. 46, 1544 (2010).Google Scholar
29. Märkle, W., Colin, J.-F., Goers, D., Spahr, M. E., and Novák, P., Electrochimica Acta 55, 4964 (2010).Google Scholar
30. Yamada, Y., Koyama, Y., Abe, T., and Ogumi, Z., J. Phys. Chem. C 113, 8948 (2009).Google Scholar
31. Xiang, H. F., Chen, C. H., Zhang, J., and Amine, K., J. Power Source 195, 604 (2010).Google Scholar