Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:37:09.265Z Has data issue: false hasContentIssue false

New hybrid inorganic-organic proton conducting membranes based on Nafion and a [(ZrO2)·(Ta2O5)0.119] oxide core-shell nanofiller

Published online by Cambridge University Press:  16 February 2012

Vito Di Noto
Affiliation:
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD) Italy.
Matteo Piga
Affiliation:
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD) Italy.
Enrico Negro
Affiliation:
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD) Italy.
Guinevere A. Giffin
Affiliation:
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD) Italy.
Sandra Lavina
Affiliation:
Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova (PD) Italy.
Get access

Abstract

Hybrid inorganic-organic proton-conducting membranes are prepared by a standard solvent casting procedure. Nafion® is used as the host polymer and [(ZrO2)·(Ta2O5)0.119] “core-shell” nanoparticles (d ~ 10-50 nm) are incorporated as the nanofiller. This filler is characterized by a “core” of ZrO2 nanoparticles covered by a Ta2O5 “shell”. The mechanical properties of the resulting hybrid membranes determined by dynamic mechanical analysis are better than those of pristine Nafion. The elastic modulus of the hybrid membranes with a filler content greater than 5 wt% is at least 1 MPa up to 200°C, while pristine Nafion undergoes an irreversible elongation at 160°C. The hybrid membranes are characterized by promising conductivities above 115°C (7.5×10-2 S·cm-1 for 9 wt% nanofiller vs. 3.3×10-2 S·cm-1 for pristine Nafion), as determined by broadband electric spectroscopy. The single fuel cell performance at low levels of hydration of the best-performing hybrid membrane (9 wt% nanofiller) is better than that of pristine recast Nafion. The maximum power densities yielded by the MEAs fabricated with pristine Nafion and the hybrid membrane are 0.026 and 0.108 W·cm-2, respectively, at 85°C, aH2O = 0.13, a reagent back pressure = 1 bar and using pure oxygen as the oxidant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., Scrosati, B., accepted for publication on Electrochim. Acta (2011), doi: 10.1016/j.electacta.2011.08.048.Google Scholar
2. Di Noto, V., Boaretto, N., Negro, E., Giffin, G. A., Lavina, S., Polizzi, S., accepted for publication on Int. J. Hydrog. Energy (2011), doi: 10.1016/j.ijhydene.2011.07.132.Google Scholar
3. Grot, W., “Fuel Cells and Batteris,” Fluorinated Ionomers, (William Andrew Inc., 2008) pp. 137155.Google Scholar
4. Di Noto, V., Negro, E., Sanchez, J.Y., Iojoiu, C., J. Am. Chem. Soc. 132, 2183 (2010).Google Scholar
5. Mauritz, K. A.; Mat. Sci. Eng. C-Bio. S.; 1998, 6, 121.Google Scholar
6. Alberti, G.; Casciola, M.; Annu. Rev. Mater. Res., 2003, 33, 129.Google Scholar
7. Thampan, T.M.; Jalani, N.H.; Choi, P.; Datta, R.; J. Electrochem. Soc., 2005, 152, A316.Google Scholar
8. Jalani, N.H.; Dunn, K.; Datta, R.; Electrochim. Acta, 2005, 51, 553.Google Scholar
9. Aparicio, M.; Klein, L.C.; J. Electrochem. Soc. 152, 2005, A493.Google Scholar
10. Satterfield, M.B.; Majsztrik, P.W.; Ota, H.; Benziger, J.B.; Bocarsly, A.B.; J. Polym. Sci. Pol. Phys. 44, 2006, 2327.Google Scholar
11. Di Noto, V., Piga, M., Piga, L., Polizzi, S., Negro, E., J. Power Sources 178, 561 (2008).Google Scholar
12. Di Noto, V., Piga, M., Lavina, S., Negro, E., Yoshida, K., Ito, R., Furukawa, T., Electrochim. Acta 55, 1431 (2010).Google Scholar
13. Di Noto, V., Negro, E., Fuel Cells 10, 234 (2010).Google Scholar
14. Kocha, S.S., “Principles of MEA preparation,” Handbook of fuel cells - Fundamentals Technology and Applications, ed. Vielstich, W., Lamm, A., Gasteiger, H.A. (John Wiley & Sons, 2003) pp. 538565.Google Scholar
15. Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T., Appl. Catal. B-Environ. 56, 9 (2005).Google Scholar
16. Di Noto, V., Bettiol, M., Bassetto, F., Boaretto, N., Negro, E., Lavina, S., Bertasi, F., accepted for publication on Int. J. Hydrog. Energy (2011), doi:10.1016/j.ijhydene.2011.07.131.Google Scholar
17. Di Noto, V., Gliubizzi, R., Negro, E., Pace, G., J. Phys. Chem. B 110, 24972 (2006).Google Scholar
18. Di Noto, V., J. Phys. Chem. B 104, 10116 (2000).Google Scholar
19. Vittadello, M., Negro, E., Lavina, S., Pace, G., Safari, A., Di Noto, V., J. Phys. Chem. B 112, 16590 (2008).Google Scholar
20. Di Noto, V., J. Phys. Chem. B 106, 11139 (2002).Google Scholar