No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Three major lithographic applications have emerged for electron beam exposure tools: optical mask fabrication, direct writing for device fabrication, and more recently projection e-beam printing. The traditional mask making process uses poly(butenesulfone) resist. A wet etch process was adopted to generate patterns on chrome. Recently, shrinking dimensions, optical proximity correction features, and the complexity of phase shift masks have forced the industry to a chrome dry etch process. ZEP, a poly(methyl α-chloroacrylate-co-α-methylstyrene) based resist, has been well accepted for most of the >180 nm device mask making. The acceptance of ZEP comes in spite of its low contrast, marginal etch resistance, organic solvent development, and concerns of resist heating associated with its high dose requirements. These issues have spawned interest in using chemically amplified resist (CAR) systems for direct write and mask making applications. We have developed a high contrast resist based on ketal protecting groups, KRS-XE, which is robust against airborne contamination and can be used for all forms of e-beam exposure in both chrome mask and silicon processing. This high contrast resist is processed with aqueous base developer and has a wide bake latitude. The development of KRS-XE has provided the capability of fabricating chrome masks for future generation (< 180 nm) devices and has potential for use with projection beam exposure systems.