Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:20:52.614Z Has data issue: false hasContentIssue false

New Growth Chemistries and Techniques in Metal-Organic Vapor Phase Epitaxy

Published online by Cambridge University Press:  26 February 2011

T. F. Kuech*
Affiliation:
IBMT. J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY, 10598
Get access

Abstract

The metal-organic vapor phase epitaxy (MOVPE) technique is perhaps themost versatile of the conventional III–V growth epitaxial systems. This versatility stems from the wide variety of chemical precursors available for the growth and doping of the films. Two examples of this versatility, carbon doping and selective epitaxy, are presented. Future progress within this technology will continue to be driven by the development of new chemistries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stringfellow, G.B., in Semiconductors and Semimetals, Vol. 22A, edited by Willardson, R. K. andBeer, A. K. (Academic Press, New York, 1984) p. 209.Google Scholar
2. Ludowise, M. A., J.Appl. Phys. 58, R31 (1985).Google Scholar
3. Kuech, T. F., Mater.Sci. Reports 2, 1 (1987).Google Scholar
4. Kuech, T. F., Wolford, D. J., Veuhoff, E., Deline, V., Mooney, P. M., Potemski, R., and Bradley, J. A., J.Appl.Phys. 62,632 (1987).Google Scholar
5. Yoshida, M., Watanabe, H.,andUesugi, F., J.Electrochem.Soc. 132, 413 (1985).Google Scholar
6. Yeddanapalli, L. M. and Schubert, C. C., J.Chem.Phys. 14, 1 (1946).Google Scholar
7. Suzuki, M. andSato, M., J.Electrochem.Soc. 132, 1654 (1985).Google Scholar
8. Mizuta, M., Iwamoto, T., Moriyama, F., Kawata, S., and Kukimoto, H., J.Crystal Growth 68, 142 (1984).CrossRefGoogle Scholar
9. Stringfellow, G. B., J.Crystal Growth 68, 111 (1984).CrossRefGoogle Scholar
10. Bhat, R., O'Conner, P., Temkin, H., Dingle, R., and Keramedias, V. G., in Gal I ium Arsenide and Related Compounds, edited by Stillman, G. (Inst.of Physics, Bristol and London, 1981) Vol.63, p.101.Google Scholar
11. Kobayashi, N. andFukui, T., Electron.Lett. 20, 887 (1984).Google Scholar
12. Kuech, T. F. andPotemski, R., Appl.Phys. Lett. 47, 821 (1985).CrossRefGoogle Scholar
13. Kuech, T. F., Veuhoff, E., Kuan, T. S., Deline, V., and potemski, R., J.Crystal Growth 77, 257 (1986).Google Scholar
14. Scilla, G.J., Kuech, T. F., and Cardone, F., Appl.Phys.Lett. 52, 1704 (1988).Google Scholar
15. Hienecke, H., Bruauers, A., Grafahrend, F., Plass, C., Putz, N., Werner, K., Weyers, M., and Luth, H., J. Crystal Growth 77, 303 (1986).CrossRefGoogle Scholar
16. Duchemin, J.P., Bonnet, M., Koelsch, F., andHuyghe, D., J.Crystal Growth 45,181 (1978).Google Scholar
17. Kamon, K., Takagashi, S., andMori, H., J.Crystal Growth 73, 73(1985).Google Scholar
18. Azoulay, R., Bouadma, N., Bouley, J.C., and Dugrand, L., J. Crystal Growth, 55, 229(1981).Google Scholar
19. Gale, R.P., McClelland, R.W., Fan, J.C.C., and Bozler, J.O., GaAs and Related Materials, 1982, Inst.of Physics. Conf.Ser.No.65, (Institute of Physics, Bristol, 1983) 10.Google Scholar
20. Ghos h, C. and Layman, R.L., Appl. Phys. Lett. 45 1229 (1984).Google Scholar
21. Nakai, K. andOzaki, M., J.Crystal Growth 68, 200 (1984).Google Scholar
22. Takahashi, Y., Sakai, S., and Umeno, M., J. Crystal Growth 68, 206, (1984).Google Scholar
23. Tausch, F.W. Jr and Lapierre, A.G., J.Electrochem.Soc. 112, 106(1965).Google Scholar
24. Shaw, D.W., J.Electrochem.Soc. 113, 904(1966).Google Scholar
25. Olsen, G.H. and Ban, V.S., Appl.Phys.Lett. 28,142 (1976).Google Scholar
26. Lindeke, K., Sack, W., and Nickl, J.J., J.Electrochem.Soc. 117, 1316(1970).Google Scholar
27. Kuech, T. F., Tischler, M. A., and Potemski, R., unpublished.Google Scholar
28. Shaw, D.W., J. Crystal Growth, 31, 130(1975).Google Scholar
29. Kuech, T.F., Tischler, M.A., Wang, P.-J., Scilla, G., Potemski, R., and Cardone, F., Appl.Phys.Lett, 53, 1317 (1988).CrossRefGoogle Scholar
30. Kuech, T.F. and Veuhoff, E., J. Crystal Growth 68 (1984) 148.Google Scholar
31. Veuhoff, E., Kuech, T.F., and Meyerson, B.S., J.Electrochem.Soc. 132, 1958 (1985).Google Scholar
32. Kuech, T.F., Scilla, G., and Cardone, F., ICMOVPE IV, Hakone, Japan, B7–2, to be pubished in J.Crystal Growth.Google Scholar
33. Lum, R.M., Klingert, J.K., and Lamont, M.G., Appl.Phys.Lett 50 (1987) 284.Google Scholar
34. Lum, R.M., Klingert, J.K., Kisker, D.W., Tennant, D.M., Morris, M.D., Malm, D.L., Kovalchick, J., and Heimbrook, L.A., J.Electron. Mater. 17 (1988) 101.Google Scholar
35. Speckman, D.M. and Wendt, J.P., ICMOVPE IV, Hakone, Japan, B1–3, to be published in J. Crystal Growth.Google Scholar
36. Kuech, T.F., Wang, P.-J., Tischler, M.A., Potemski, R., Scilla, G., and Cardone, F., ICMOVPE IV, Hakone, Japan, B2–7, to be publ i shed in J. Crystal Growth.Google Scholar
37. Lee, P.W., Omstead, T.R., McKenna, D.R.,and Jensen, K.F., ICMOVPE IV, Hakone, Japan, A7–3, to be published in J.Crystal Growth.Google Scholar
38. Larsen, C.A., Buchan, N.I., Li, S.H., and Stringfellow, G.B., ICMOVPE IV, Hakone, Japan, A8–5, to be published in J. Crystal Growth.Google Scholar