Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:55:27.762Z Has data issue: false hasContentIssue false

New Generation of Hybrid Organic-Inorganic Macrocellular Foams: Integrative Chemistry Toward Reaching Multifunctional Materials

Published online by Cambridge University Press:  17 March 2011

Simona Ungureanu
Affiliation:
C.R.P.P. CNRS UPR 8641, 115 Ave. Albert Schweitzer, Pessac, F-33600, France
Hervé Deleuze
Affiliation:
ISM-UMR CNRS 5802, Université Bordeaux-I, 351 cours de la Libération, Talence, 33045, France
Marc Birot
Affiliation:
ISM-UMR CNRS 5802, Université Bordeaux-I, 351 cours de la Libération, Talence, 33045, France
Clément Sanchez
Affiliation:
LCMCP UMR CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, Tour 54, E. 5, Couloir 54-55, Paris, 75252, France
Rénal Backov
Affiliation:
C.R.P.P. CNRS UPR 8641, 115 Ave. Albert Schweitzer, Pessac, F-33600, France
Get access

Abstract

The elaboration of organosilica based hybrid monoliths exhibiting a hierarchically structured bimodal porous structure with tunable functionality have been processed via High Internal Polymeric Emulsion (HIPE) process for the first time. Through one pot synthesis, many organic functionalities that can act as network modifiers (Methyl, Dinitrophenylamino, Benzyl, Mercaptopropyl) or co-network formers (Pyrrol) have been anchored to the amorphous silica porous network. The resulting materials have been thoroughly characterized via a large set of techniques SEM, TEM, SAXS, mercury porosimmetry, nitrogen adsorption isotherms, FTIR, 29Si MAS NMR. These sol-gel derived hierarchical open cell functional hybrid monoliths exhibit macroscopic void spaces ranging from 5 up to 30 [.proportional]m and their accessible micro-mesoporosity, reveal hexagonal organisation for the dinitrophenylamino, benzyl, and pyrrol based hybrids. The average condensation degree for these hybrid networks ranges between 86 and 90% yielding shaped monoliths with both good integrity and sufficient mechanical properties to be usable as functional catalytic or chromatographic supports.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mann, S., Burkett, S.L., Davis, S.A., Fowler, C.E., Mendelson, N.H., Sims, S.D., Walsh, D., Whilton, N.T. Chem. Mater., 1997, 9, 2300; G. A Ozin Chem. Commun., 2000, 6, 419; C. Sanchez, H. Arribart, M.M. Giraud-Guille Nature Materials, 2005, 4, 277.Google Scholar
2. Imhof, A., Pine, D.J.. Adv. Mater., 1998, 10, 697.Google Scholar
3. Chandrappa, G.T., Steunou, N., Livage, J. Nature, 2002, 416, 702; F. Carn, A. Colin, M.-F. Achard, H. Deleuze, Z. Saadi, R. Backov Adv. Mater., 2004, 16, 140; F. Carn, P. Masse, H. Sadaoui, B. Julian, H. Deleuze, S. Ravaine, C. Sanchez, D.R. Talham, R. Backov Langmuir, 2006, 22, 5469.Google Scholar
4. Holland, B.T., Blanford, C.F., Stein, A. Science, 1998, 281, 538.Google Scholar
5. Davis, S.A., Burkett, S.L., Mendelson, N.H., Mann, S. Nature, 1997,385, 420.Google Scholar
6. Llusar, M., Roux, C., Pozzo, J.-L., Sanchez, C. J. Mater. Chem., 2003, 3, 442.Google Scholar
7. Nakanishi, K. J. Porous. Mat., 1997, 4, 67.Google Scholar
8. Backov, R. Soft Matter, 2006, 2, 452.Google Scholar
9. Imhof, A., Pine, D.J. Nature 1997, 389, 948.Google Scholar
10. Carn, F., Colin, A., Achard, M.-F., Deleuze, H., Birot, M., Backov, R. J. Mater.Chem. 2004, 14, 1370.Google Scholar
11. Barby, D., Haq, Z. Eur. Pat. 0060138, 1982.Google Scholar