Published online by Cambridge University Press: 17 March 2011
The elaboration of organosilica based hybrid monoliths exhibiting a hierarchically structured bimodal porous structure with tunable functionality have been processed via High Internal Polymeric Emulsion (HIPE) process for the first time. Through one pot synthesis, many organic functionalities that can act as network modifiers (Methyl, Dinitrophenylamino, Benzyl, Mercaptopropyl) or co-network formers (Pyrrol) have been anchored to the amorphous silica porous network. The resulting materials have been thoroughly characterized via a large set of techniques SEM, TEM, SAXS, mercury porosimmetry, nitrogen adsorption isotherms, FTIR, 29Si MAS NMR. These sol-gel derived hierarchical open cell functional hybrid monoliths exhibit macroscopic void spaces ranging from 5 up to 30 [.proportional]m and their accessible micro-mesoporosity, reveal hexagonal organisation for the dinitrophenylamino, benzyl, and pyrrol based hybrids. The average condensation degree for these hybrid networks ranges between 86 and 90% yielding shaped monoliths with both good integrity and sufficient mechanical properties to be usable as functional catalytic or chromatographic supports.