Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:13:48.110Z Has data issue: false hasContentIssue false

New Ferroelectric Liquid Crystal Polymers for Nonlinear Optics Applications

Published online by Cambridge University Press:  21 February 2011

William N. Thurmes
Affiliation:
Displaytech, Inc., 2200 Central Avenue, Boulder, Colorado 80301
Kundalika M. More
Affiliation:
Displaytech, Inc., 2200 Central Avenue, Boulder, Colorado 80301
Rohini T. Vohra
Affiliation:
Displaytech, Inc., 2200 Central Avenue, Boulder, Colorado 80301
Michael D. Wand
Affiliation:
Displaytech, Inc., 2200 Central Avenue, Boulder, Colorado 80301
David M. Walba
Affiliation:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309–0215
Patrick Keller
Affiliation:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309–0215
Get access

Abstract

Initial results of a project directed towards the design and synthesis of ferroelectric liquid crystal polymers (FLCPs) for second order nonlinear optics (NLO) applications are described. FLCP glasses represent a novel type of solid, a truly noncrystalline solid with thermodynamically stable polar order. FLCPs with useful magnitude of the second order susceptibility χ(2) and processability not possible with poled polymers or crystals have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hornak, L. A., ed., Polymers for Lightwave and Integrated Optics, Marcel Dekker, New York (1992).Google Scholar
2 Verbiest, T., Kauranen, M., Persoons, A., Ikonen, M., Kurkela, J., and Lemmetyinen, H., J. Amer. Chem. Soc. 116, 9203 (1994).Google Scholar
3 Meerholz, K., Volodin, B. L., Sandolphon, , Kippelen, B. and Peyghambarian, N., Nature 371, 497 (1994).Google Scholar
4 a) Suzuki, A. and Matsuoka, Y., J. Appl. Phys. 77, 965 (1995). b) J. I. Chen et al., Eur. Polym. J. 30, 1357 (1994). c) R. J. Jeng et al., J. Appl. Polym. Sci. 55, 209 (1995). d) M. Kamath et al., J. Mat. Soc. Pure Appl. Phys. A31, 2011 (1994).Google Scholar
5 Walba, D. M., Zummach, D. A., Wand, M. D., Thurmes, W. N., More, K. M., Arnett, K. E., Proc. SPIE 1911, 21 (1993).Google Scholar
6 Liu, J. Y., Robinson, M. G., Johnson, K. M. and Doroski, D. Optics Letters 15, 267 (1990).Google Scholar
7 Walba, D. M., Ros, M. B., Sierra, T., Rego, J. A., Clark, N. A., Shao, R., Wand, M. D., Vohra, R. T., Arnett, K. E. and Velsko, S. P. Ferroelectrics 121, 247 (1991).Google Scholar
8 Walba, D. M., Ros, M. B., Clark, N. A., Shao, R., Robinson, M. G., Liu, J.-Y., Johnson, K. M. and Doroski, D. J. Am. Chem. Soc. 113,5471 (1991).Google Scholar
9 Liu, J.-Y. Ph.D. Thesis, University of Colorado, Boulder (1992).Google Scholar
10 Schmidt, K., Herr, R.-P., Schadt, M., Fünfschilling, J., Buchecker, R., Chen, X. H. and Benecke, C., Liquid Crystals 14, 1735 (1993).Google Scholar
11 Dyer, D. J. and Walba, D. M., Chem. Mat. 6, 1096 (1994).Google Scholar