Published online by Cambridge University Press: 16 February 2011
Lignins, a truly abundant group of biopolymers exhibiting some significant diversity, are usually thought to be constituted by a random proportionate distribution of ten different linkages between p-hydroxphenylpropane units. Over 20 million tons of kraft lignin derivatives are produced annually in the United States by the pulping industry, but 99.9% of these aromatic polymeric materials are consumed as fuel. Such industrial byproducts are generally viewed as being almost hopelessly complicated mixtures of partially degraded and condensed chemical species. However, a very different picture has begun to emerge from a more coherent understanding of the physicochemical behavior exhibited by kraft lignin preparations. Noncovalent interactions between the individual molecular components under a variety of solution conditions orchestrate pronounced associative processes that are characterized by a remarkable degree of specificity. Their consequences may be readily observed both size-exclusion chromatographically and electron microscopically, and are reflected in an anomalous variation of glass transition temperature, Tg, with molecular weight of paucidisperse kraft lignin fractions. How these effects may influence the mechanical properties of lignin-based polymeric materials is presently being scrutinized at the University of Minnesota.