Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:36:32.576Z Has data issue: false hasContentIssue false

New Electronic Properties of Metal / III-V Compound Semiconductor Interfaces

Published online by Cambridge University Press:  25 February 2011

L. J. Brillson
Affiliation:
Xerox Webster Research Center, 800 Phillips Rd 0114-41D, Webster, NY 14580
R. E. Viturro
Affiliation:
Xerox Webster Research Center, 800 Phillips Rd 0114-41D, Webster, NY 14580
S. Chang
Affiliation:
Xerox Webster Research Center, 800 Phillips Rd 0114-41D, Webster, NY 14580
J. L. Shaw
Affiliation:
Xerox Webster Research Center, 800 Phillips Rd 0114-41D, Webster, NY 14580
C. Mailhiot
Affiliation:
Xerox Webster Research Center, 800 Phillips Rd 0114-41D, Webster, NY 14580
R. Zanoni
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
Y. Hwu
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
G. Margaritondo
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
P. Kirchner
Affiliation:
IBM Watson Research Center, P.O. Box 218, Yorktown, Heights, NY 10598
J. M. Woodall
Affiliation:
IBM Watson Research Center, P.O. Box 218, Yorktown, Heights, NY 10598
Get access

Abstract

Recent studies of interface states and band bending at metal / III-V compound semiconductor interfaces reveal that these junctions are much more controllable and predictable than commonly believed. Soft x-ray photoemission spectroscopy studies demonstrate a wide range of band bending for metals on many III-V compounds, including GaAs. Cathodoluminescence spectroscopy measurements show that discrete states form at the microscopic junction which can have a dominant effect on the band bending properties. Internal photoemission measurements confirm the bulk barrier heights inferred by photoemission methods. After separating out surface chemical and bulk crystal quality effects, one finds simple, predictive barrier height variations which follow classical Schottky behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sze, S.M., Physics of Semiconductor Devices, 2nd Ed. (Wiley, New York, 1981) ch. 5.Google Scholar
2. Bardeen, J., Phys. Rev. 71, 717 (1947).CrossRefGoogle Scholar
3. Brillson, L.J., Surface Sci. Repts. 2, 123 (1982).Google Scholar
4. Brillson, L. J. and Margaritondo, G., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Eds. King, D.A. and Woodruff, D.P. (Elsevier, Amsterdam, 1988), Vol.5, p. 119.Google Scholar
5. Weaver, J. H., Treatise on Mater.Technol. 27, 15 (1988).CrossRefGoogle Scholar
6. Brillson, L.J., Slade, M.L., Viturro, R.E., Kelly, M., Tache, N., Margaritondo, G., Woodall, J., Pettit, G.D., Kirchner, P.D., and Wright, S.L., Appl. Phys. Lett. 48, 1458 (1986).Google Scholar
7. Brillson, L.J., Viturro, R.E., Slade, M.L., Chiaradia, P., Kilday, D., Kelly, M., and Margaritondo, G., Appl. Phys. Lett. 50, 1379 (1987).Google Scholar
8. Viturro, R.E., Shaw, J.U, Mailhiot, C., Tache, N., McKinley, J., Margaritondo, G., Woodall, J.M., Kirchner, P.D., Pettit, G.D., Wright, S.L., and Brillson, L.J., Appl. Phys. Lett. 52, 2052 (1988).Google Scholar
9. Brillson, L. J., Viturro, R. E., Shaw, J. L., Mailhiot, C., Tache, N., McKinley, J., Margaritondo, G., Woodall, J. M., Kirchner, P. D., Pettit, G. D., and Wright, S. L., J. Vac. Sci. Technol. B6, 1263 (1988).Google Scholar
10. Mailhiot, C. and Duke, C.B., Phys. Rev. B33, 1118 (1986); C.B. Duke and C. Mailhiot, J. Vac. Sci. Technol. B3, 1170 (1985).CrossRefGoogle Scholar
11. Brillson, L. J., in Metallization and Metal-Semiconductor Interfaces, NATO ASI Conference Series, edited by Batra, I. (Plenum, NY, 1989), in press.Google Scholar
12. Viturro, R. E., Shaw, J.L., Brillson, L. J., and LaGraffe, D., J. Vac. Sci. Technol., in press.Google Scholar
13. Brillson, L. J., Viturro, R. E., Shaw, J. L., and Richter, H.W., J. Vac. Sci. Technol. A6, 1437 (1988).Google Scholar
14. Viturro, R.E., Slade, M.L., and Brillson, L.J., Phys. Rev. Lett. 57, 487 (1986).Google Scholar
15. Viturro, R.E., Shaw, J.L., and Brillson, L., J.Vac. Sci. Technol. B6, 1579(1988).Google Scholar
16. Viturro, R.E., Shaw, J. L., and Brillson, L. J., J. Vac. Sci. Technol. B6, 1397 (1988).Google Scholar
17. Mirceau, A. and Bois, D., Inst. Phys. Conf. Ser. 46, 82 (1979).Google Scholar
18. Weber, E.R., Ennen, H., Kaufmann, V., Windschief, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).Google Scholar
19. Shaw, J. L., Viturro, R. E., Brillson, L. J., Kilday, D., Kelly, M. K., and Margaritondo, G., J. Electron. Mat. 17, 149 (1988).CrossRefGoogle Scholar
20. Shaw, J. L., Viturro, R. E., and Brillson, L. J., Kilday, D., Kelly, M., and Margaritondo, G., J. Vac. Sci. Technol. A6, 1579 (1988).CrossRefGoogle Scholar
21. Shaw, J. L., Viturro, R. E., Brillson, L. J., and LaGraffe, D., J. Vac. Sci. Technol. A7, 489 (1989).Google Scholar
22. Shaw, J. L., Viturro, R. E., Brillson, L.J., and LaGraffe, D., Appl. Phys. Lett. 53, 1723 (1988).Google Scholar
23.See, for example, Stiles, K., Kahn, A., Kilday, D.G., and Margaritondo, G., J. Vac. Sci. Technol. B5, 987 (1987).CrossRefGoogle Scholar
24. Viturro, R. E., Chang, S., Shaw, J.L., Mailhiot, C., Brillson, L. J., Zanoni, R., Hwu, Y., Margaritondo, G., Kirchner, P., and Woodall, J. M., J. Vac. Sci. Technol., in press.Google Scholar
25. Tersoff, J., Phys. Rev. B32, 6968 (1985), and references therein.Google Scholar
26. Schottky, W., Z. Physik 113, 367 (1939).CrossRefGoogle Scholar